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Abstract

By introducing an information friction to a heterogeneous agent model, we are
able to explain two patterns of small economies experiencing large income changes:
(1) excess volatility in consumption and (2) household consumption elasticities that
have low correlation with income. With a standard dispersed information structure,
households cannot distinguish aggregate income shocks from idiosyncratic ones. Their
consumption responds excessively to aggregate shocks, which they incorrectly forecast
to be too persistent. This effect occurs homogeneously across the income distribution,
lowering the correlation of the consumption elasticity with income. We corroborate
our central mechanism using survey data on household expectations of their future
earnings.
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1 Introduction
Why is aggregate consumption so volatile? This is a classic question in macroeconomics.
Traditional models with full information and rational expectations (FIRE) predict that con-
sumption will be relatively inelastic to aggregate income changes, as households smooth con-
sumption (Kydland and Prescott, 1982). However, consumption volatility is much higher
than expected, even more so in developing open economies (Aguiar and Gopinath, 2007).
Hypothesized explanations are abundant in the literature, but recent evidence narrows down
the possibilities. Guntin et al. (2023) (hereafter GOP) show that a subset of models where
financial frictions drive consumption volatility predict that across households, the elastic-
ity of consumption to an aggregate income shock should decrease with household income.1

Yet, GOP document that the consumption elasticity to large macroeconomic shocks remains
high across the entire income distribution, using household-level consumption data from four
small open economies.2 They conclude that consumers of all income levels appear to respond
as if changes to aggregate income are permanent shocks.

We propose an explanation that is consistent with the finding by GOP: households face
an information friction. Specifically, households are unable to accurately distinguish idiosyn-
cratic income shocks from aggregate income shocks. Crucially, the idiosyncratic component
of household income is more persistent than aggregate income. Therefore, if household in-
come rises due to an aggregate shock, households will expect their income improvement to
be more persistent than if they had full information. Households respond by increasing con-
sumption by more than if they correctly predicted that the income improvement would be
short-lived.

We study this mechanism in a tractable heterogeneous agent model with a standard
1Like Guntin et al. (2023), we are careful to distinguish the distribution of consumption elasticities to

aggregate income shocks from the distribution of marginal propensities to consume (MPCs), which are
elasticities to unexpected idiosyncratic windfalls. Empirical evidence is clear that the MPCs to transitory
income shocks are decreasing with income and especially household liquidity. For example, Johnson et al.
(2006) document this pattern in the response to 2001 tax rebates, Parker et al. (2013) do the same for
2008 stimulus checks, as do Chetty et al. (2020) for COVID-19 relief. These relationships with income
are consistent with standard theories, including our own. Kaplan and Violante (2014) augment a standard
theory to explain why liquidity matters more than income or wealth.

2GOP study a class of models with financial frictions that attribute large declines in consumption to
transitory declines in income and a tightening in financial conditions (see Mendoza (2005, 2010), and Eg-
gertsson and Krugman (2012) for examples). They show that models with these features predict that the
consumption elasticity with respect to an aggregate income shock should decrease with household income.
However, GOP note that settings in which negative transitory shocks can lead to near-permanent effects on
economic activity can generate consumption patterns similar to the ones they document. Examples include
Benigno and Fornaro (2018), Ma (2020), Queralto (2020), Benguria et al. (2022), and Gornemann et al.
(2024). A common feature is a distortion in production and innovation decisions caused by the interaction
of financial frictions or liquidity traps with transitory shocks.
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dispersed information structure. Households in a small open economy receive stochastic
income, and solve a standard consumption-savings problem to mitigate their income risk
and smooth consumption over time. Income is determined by two stochastic components: a
very persistent idiosyncratic income process, and a less persistent common aggregate income
process.3 Households have rational expectations, but incomplete information. They do not
directly observe aggregate income shocks, and so cannot accurately distinguish between the
two components, which distorts their consumption and savings decisions. We find that the
volatility of aggregate consumption growth is one half larger when agents face the information
friction. The additional risk induces a stronger precautionary savings motive, so average
savings is 35% higher than the full information baseline. And while consumption is more
volatile, the elevated wealth also increases the average consumption level.

In the cross-section, we also recover results that are in line with GOP’s finding of rela-
tively homogeneous consumption responses to income shocks. Specifically, we document that
the consumption elasticity to aggregate income is larger and more homogeneous across the
income distribution when agents face information frictions, where the slope of the consump-
tion elasticity across log income levels is nearly zero. This is the first of several results that
require studying incomplete information and heterogeneous agents in a unified framework.
Moreover, we find that the information friction and financial friction interact in a variety of
rich ways: the frictions jointly attenuate inequality dynamics, reduce the sensitivity of the
wealth distribution to the borrowing constraint, reverse the relationship between idiosyn-
cratic risk and the aggregate consumption elasticity, and generate endogenous correlations
between aggregate forecasts and wealth.

Is our information friction realistic? To answer this question, we turn to survey data on
household expectations, and document evidence corroborating our central mechanism. The
main implication of the information friction is that the response of households forecasts of
their own income should respond with the same elasticity to aggregate and idiosyncratic
income shocks. If instead households have full information, then their forecasts will be less
elastic to aggregate than to idiosyncratic shocks. This is a testable prediction. We employ
data on household forecasts from the NY Fed’s Survey of Consumer Expectations, and
decompose household income into aggregate and idiosyncratic components at the state level.
Our results are clear: household forecasts are at least as elastic to aggregate shocks as to
idiosyncratic shocks. Thus we confirm that GOP’s characterization of consumption behavior

3A large literature studying household income dynamics finds a persistent component of idiosyncratic
earnings that is highly autocorrelated (Heathcote et al., 2010), a finding that is confirmed in recent work
with administrative data (Guvenen et al., 2021), and which we establish using the Panel Study of Income
Dynamics (PSID). The autocorrelation is so high, that it is often modeled as a random walk (Blundell et al.,
2008). In contrast, aggregate earnings exhibit faster reversion to trend, which we document in Appendix A.
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applies to household expectations as well: consumers’ forecasts respond to aggregate income
changes as if they are more persistent than they really are.

Our paper contributes to several strands of the literature. First, we join a small but
promising new literature that synthesizes incomplete information theories with heterogeneous
agent models. Broer et al. (2021) and Broer et al. (2022) depart from the standard FIRE
structure by introducing a rational inattention decision that is endogenously heterogeneous.4

Angeletos and Huo (2021) show that myopic effects of information frictions are exacerbated
by the MPC distribution typical of HANK models. Gallegos (2022) extends Bilbiie (2020)
to study a linear HANK model with dispersed information.5

Second, we contribute to the empirical literature on systematic errors in expectations
revealed in survey data. We join a large group of papers studying errors in households
forecasts of their own outcomes. Most closely related, Rozsypal and Schlafmann (2023)
use forecast errors of household income from the Michigan Survey of Consumers and find
that households overestimate the persistence of their own income and are too pessimistic
about aggregate income.6 We also join a small group of papers that examines the effects of
aggregate shocks on forecasts of idiosyncratic variables. We study households, while many
of these papers concern firms. For example, Andrade et al. (2022) and Adams et al. (2024)
study how firms’ forecasts of their own prices and production respond to aggregate and
industry-level shocks, finding support for the standard dispersed information structure.7

Third, we contribute to a class of heterogeneous agent models attempting to understand
large consumption responses to income. While we follow GOP and study the consumption-
income elasticity to aggregate shocks, many more papers focus on explaining large MPCs.
We consider our explanation of the consumption-income elasticity to be complementary to
this literature, which Kaplan and Violante (2022) survey. While our simple model cannot
explain the cross-sectional evidence on consumption out of idiosyncratic windfalls, our large
consumption elasticities to aggregate shocks are relevant for many of the same aggregate

4Other papers depart from FIRE in heterogeneous agent models by relaxing rational expectations rather
than of full information. For example, Auclert et al. (2020) and Carroll et al. (2020) assume agents have
sticky expectations, in the style of Mankiw and Reis (2002) and Carroll (2003). Exler et al. (2020), Rozsypal
and Schlafmann (2021), and Balleer et al. (2021) assume that agents form expectations with incorrectly
specified models of their stochastic incomes.

5Angeletos and Lian (2016) survey the broader literature of incomplete information in macroeconomics.
See Heathcote et al. (2009), Quadrini and Ríos-Rull (2015), Krueger et al. (2016) for broad surveys of the
household heterogeneity models, and Kaplan and Violante (2018) for a more recent survey that includes
HANK features.

6Other work studying errors in workers expectations of their own labor market outcomes includes Balleer
et al. (2021), Mueller et al. (2021), and Adams-Prassl et al. (2023). Mueller and Spinnewijn (2021) survey
this literature more generally.

7Born et al. (2023) survey additional work on firms’ forecasts of production and prices.
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applications.8 One advantage of our approach is that we attain large consumption-income
elasticities, while maintaining a wealth distribution that does not suffer from the “missing
middle” problem that Kaplan and Violante identify as plaguing most single asset models
that otherwise achieve large MPCs.

The remainder of the paper is organized as follows. In Section 2 we describe our model,
including the structure and intuition for the information friction. Section 3 describes our
main results and equilibrium behavior in the model. In Section 4 we explore the interactions
between the information and asset market frictions. Section 5 documents the empirical
evidence corroborating our information friction. Section 6 concludes.

2 Model
In this section we describe our baseline model. Heterogeneous agents trade risk-free assets in
a small open economy in order to self-insure against income risk and smooth consumption.
The agents face a standard friction: dispersed information in the style of Lucas (1972) that
prevents them from observing the aggregate state of the economy.

2.1 Households

There is a unit measure of identical and infinitely lived households. Households are indexed
by i and time is indexed by t.

The household’s preferences over current and future consumption are represented by the
utility function

Ei,t

[
∞∑
s=0

βs
C1−γ
i,t+s − 1

1− γ

]
(1)

where Ci,t is the household’s consumption in period t, β is its discount factor, and γ is the
coefficient of relative risk aversion. Households have rational expectations, but incomplete
information. The expectation operator Ei,t is conditional on household i’s information set
Ωi,t. Thus the only distortion to households’ forecasts is due to the information friction;
given their information, households have rational expectations.

The household receives stochastic income Yi,t, which in logs is the sum of a mean zero
idiosyncratic component Y I

i,t and a common aggregate component Y G
t :

lnYi,t = lnY I
i,t + lnY G

t (2)
8This includes monetary policy (Kaplan et al., 2018), fiscal policy (Auclert et al., 2018), and aggregate

shocks in general (Bilbiie, 2020) among others.
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The idiosyncratic and aggregate components each follow an AR(1) process:

lnY I
i,t = ρI lnY

I
i,t−1 + uIi,t lnY G

t = ρG lnY G
t−1 + uGt (3)

with uIi,t ∼ N(0, σ2
I ), uGt ∼ N(0, σ2

G), ρI ∈ (0, 1), and ρG ∈ (0, 1). Crucially, we assume ρI >
ρG so that the idiosyncratic component is more persistent than the aggregate component.

Household log income lnYi,t is the sum of independent AR(1) processes, so lnYi,t is an
ARMA(2,1). Appendix B derives the parameters of this composite time series.

The household may hold a risk-free asset At which pays exogenous interest rate r. The
household’s budget constraint is

Yi,t + (1 + r)Ai,t = Ci,t + Ai,t+1 (4)

with Ai,t+1 ≥ 0 for t ≥ 0. This implies that households cannot borrow.

2.2 The Information Friction

Households do not observe the incomes or choices of any other households, nor of the ag-
gregate economy. They observe their income Yi,t but cannot independently observe the
idiosyncratic and aggregate components Y I

i,t and Y G
t . Thus if their income rises, they are

unsure to what extent the increase was specific to them or economy-wide. Formally, the
household’s information set evolves by

Ωi,t = {Ωi,t−1, Yi,t, Ai,t} (5)

Every period, households observe one new signal Yi,t determined by the two realizations Y I
i,t

and Y G
t . Even though households have rational expectations and know the parameters of

the model, they cannot determine the realization of either the idiosyncratic or aggregate
component with certainty. And because there are more new shocks that new signals every
period, they can never learn exactly whether past changes to their incomes were driven by
aggregate or idiosyncratic factors.9 This imperfect backcasting reflects real world behavior;
even if agents do not face literal information frictions, they act as if they do. Households
are known to be inaccurate backcasters even for salient macroeconomic time series such as
inflation (Jonung, 1981; Jonung and Laidler, 1988; Antonides, 2008; Axelrod et al., 2018).

The information friction makes households over-estimate the persistence of an aggregate
income shock. The autocorrelation of the aggregate income component ρG is less than

9Appendix B.6 demonstrates this mathematically.
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that of the idiosyncratic income component ρI . The sum of the two components, which is
observed by households, has an autocorrelation between ρG and ρI : individual income is
more persistent than aggregate income. So when there is an aggregate income shock and
households cannot tell that the shock is aggregate, they expect their income to change more
persistently than they would if they had full information.

(a) Different Idiosyncratic Persistences (b) Different Idiosyncratic Variances

Figure 1: Income Forecasts After Aggregate Shocks

Notes: Both panels plot the term structure of expectations after a unit aggregate income shock, with the
aggregate autocorrelation set to ρG = 0.8. Panel (a) varies the idiosyncratic autocorrelation, with the relative
idiosyncratic shock variance fixed at σ2

I = 10σ2
G. Panel (b) varies the idiosyncratic shock variance, with the

idiosyncratic autocorrelation fixed at ρI = 0.95.

Figure 1 demonstrates this over-estimation of an aggregate shock’s persistence. This fig-
ure plots households’ forecasts of their income multiple periods into the future after receiving
an aggregate income shock.10 The aggregate autocorrelation is ρG = 0.8; when households
have full information, they correctly forecast their future income which decays relatively
rapidly (the solid red curves).

The information friction matters most when the aggregate and idiosyncratic autocor-
relations are most dissimilar. Panel (a) plots forecasts under incomplete information for
different idiosyncratic autocorrelations ρI . When ρI = ρG, the information friction has no
effect and households’ forecasts are equivalent to the full information forecasts. When ρI is
larger, individual income is more persistent, so households’ forecasts of future income decay
more slowly, and their expectations diverge from the full information case.

The information friction also has larger effects when the idiosyncratic shock has a larger
variance. The autocorrelation of individual income is somewhere between those of the ag-

10Appendix B.4 derives expressions for these forecasts.
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gregate and idiosyncratic components, and when the idiosyncratic component has a larger
variance, its larger autocorrelation makes individual income more persistent. Panel (b) plots
this effect for different idiosyncratic shock variances σ2

I , while the other parameters are held
at ρG = 0.80, ρI = 0.95, and the aggregate shock variance is σ2

G = 1. When σ2
I is larger,

the idiosyncratic process has higher weight in determining income which becomes more per-
sistent, and forecasted income decays more slowly. When σ2

I is small, household income is
mostly driven by the aggregate process so households forecast accurately after an aggregate
shock; as σ2

I goes to zero, the effect of the information friction disappears.

2.3 Equilibrium Definition

Given infinite sequences of exogenous variables {Yi,t, Y G
t , Y

I
i,t, u

G
t , u

I
i,t} for all i ∈ I, a com-

petitive equilibrium in this economy consists of infinite sequences of allocations {Ci,t, Ai,t}
for all i ∈ I; and information sets Ωi,t for all i ∈ I such that:

1. Households maximize utility (1), subject to the budget constraint (4) and the no-
borrowing constraint.

2. Income is determined by (2) and (3).

3. Information sets evolve according to (5).

3 Quantitative Analysis
In this section we document the model behavior. The information friction raises consump-
tion volatility and nearly eliminates the correlation between household income and their
consumption elasticity to aggregate shocks.

3.1 Calibration

We calibrate the model to match features of U.S. states, which we treat as small open
economies. The time frequency is annual, and we set the world annual real interest to 2%.
The discount factor β is set to be 0.945 in order to match the U.S. ratio of net worth to
labor income in the National Income and Product Accounts (NIPA) and the Federal Reserve’s
Flow of Funds Tables. The risk aversion parameter γ is equal to 1 so that agents have a
log utility function. To parameterize the aggregate income shock process, we use the U.S.
NIPA accounts to estimate a state-level aggregate income process (Appendix A). We find
that the autocorrelation is approximately 0.87 and the standard deviation is roughly 0.03.
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These statistics define the values for ρG and σG. For the stochastic process for idiosyncratic
income, we set the values of ρI and σI to match the income dynamics estimated by Guvenen
et al. (2021), which implies ρI = 0.97 and σI = 0.19.11 Table 1 summarizes our baseline
calibration.12

Parameter Interpretation Value Reference
β Discount factor 0.945 U.S. net-worth-to-earnings ratio of 8
r Real interest rate 0.02 Standard value
γ Risk aversion 1 Standard value
ρI Persistence of idiosyncratic income shock 0.97 Guvenen et al. (2021)
σI Standard deviation of idiosyncratic income shock 0.19 Guvenen et al. (2021)
ρG Persistence of aggregate income shock 0.87 NIPA
σG Standard deviation of aggregate income shock 0.03 NIPA

Table 1: Calibration

The discretization of the stochastic processes for idiosyncratic and aggregate income is
different for the full information and the incomplete cases. As shown in Appendix B.1,
the income process in the incomplete information case follows an ARMA(2,1) process. We
express this process as a VAR(1) and then use Tauchen (1986)’s approach. We solve the
model using a variation of Coleman (1990)’s time iteration method. See Appendix C.1 for
more details about the solution method or grids. We consider an asset grid with a zero lower
bound for assets, so that in the baseline calibration agents are not able to borrow.

3.2 Main Results

3.2.1 Long-run Moments

In order to assess the role of incomplete information we compare the two models in terms of
their long-run moments, and in the way agents respond to idiosyncratic and aggregate income
shocks. Using the policy functions we simulate an economy composed of 2,000 individuals
for 10,000 periods. We simulate this economy with both incomplete and full information,

11This calibration contrasts with that of Pischke (1995), who estimates that idiosyncratic income is less
persistent than aggregate income. This leads to the opposite conclusion as our analysis: the information
friction causes aggregate consumption to be less volatile. The difference in calibration is due to two factors.
First, Pischke uses household incomes reported in the Survey of Income and Program Participation, which
features more measurement error than the Social Security Administration data that Guvenen et al. (2021)
have access to. Second, Pischke estimates MA processes in differences, while the estimates in our calibration
are ARMA processes in levels.

12We explore alternative calibrations in Appendix F. First, we recalibrate the interest rate in the full
information model to target the same asset-to-income ratio as the incomplete information case, rather than
selecting a common interest rate. Then, we explore relaxing the borrowing constraint and adjusting the
contribution of idiosyncratic risk. Across these exercises, none of our qualitative conclusions change, although
we document additional ways that our information and financial frictions interact.
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employing the same sequences of shocks in each simulation. Table 2 presents a summary of
the long-run moments of aggregate and cross-sectional moments of the two models.

Full Information Incomplete Information
Aggregate Dynamics
Consumption: Standard Deviation (log change) 0.0079 0.0121
Consumption: Autocorrelation 0.979 0.952
Assets: Standard Deviation (log change) 0.0066 0.0038
Assets: Autocorrelation 0.997 0.997
Cross-Sectional Statistics
Income: Mean 1.38 1.38
Income: Coefficient of Variation 0.95 0.95
Consumption: Mean 1.55 1.60
Consumption: Coefficient of Variation 0.80 0.79
Consumption: Autocorrelation 0.99 0.99
Assets: Mean 8.18 11.06
Assets: Coefficient of Variation 1.46 1.19
Assets: Autocorrelation 1.00 1.00
Notes: Long-run moments are calculated from a simulation of 2,000 households and 10,000 periods.
We use the same sequences of aggregate and idiosyncratic shocks for both models.

Table 2: Long-run Moments

The simulated statistics of Table 2 reveal how the information friction distorts con-
sumption decisions. Aggregate consumption growth is 53% more volatile under incomplete
information, because households undersave in response to aggregate income shocks, which
they cannot distinguish from more persistent idiosyncratic shocks. Consumption is also less
autocorrelated, reflecting that households are less effective at smoothing consumption. Be-
cause the incomplete information households forecast income less accurately, they have a
stronger precautionary savings motive. Facing the same interest rate, they hold more assets
than they would under full information. The additional financial income allows them to
afford higher average consumption as well.

In the cross-section, the information friction distorts consumption and assets in different
ways. The friction decreases wealth inequality because the increased precautionary savings
motive is strongest at lower asset levels: poor households have stronger incentives to save and
move away from the constraint, but rich households still act as if they are nearly unaffected
by the constraint. This effect is clear in Figure 2 panel (a), which presents the ergodic
distributions of aggregate assets for both models. The information friction distorts the
distribution most for low asset levels: the full information model has much more mass near
the borrowing constraint, but a similar right tail.13

13The full information model that we analyze is unable to generate realistic wealth inequality. This remains
true when we introduce the information friction. Appendix F.2 considers an extension where the discount
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In contrast, the friction has little effect on consumption inequality (Figure 2 panel (b)).
All else equal, the lower wealth inequality would reduce consumption inequality. But this
force is offset because households are less effective at consumption smoothing. Most of
their income is driven by idiosyncratic shocks, to which households underreact in the short
run, before appropriately increasing their consumption response once they realize that their
income change was persistent. This delayed consumption response amplifies consumption
dispersion because households with large shocks have additional savings to draw down as
excess consumption. On net, the coefficient of variation for consumption is almost as large
with the information friction as it is without, even though wealth is much more equally
distributed.

(a) Assets (b) Consumption

Figure 2: Ergodic Distributions - Full and Incomplete Information Models

Notes: The ergodic distributions are each calculated from a simulation of 2,000 households and 10,000
periods. We use the same sequences of aggregate and idiosyncratic shocks for both models. Both distributions
extend outside the axis range, but the right tails are omitted for readability.

3.2.2 Consumption Volatility

Table 2 reports that the information friction increases aggregate consumption volatility. To
understand why, this section compares how the two economies respond to income shocks.

Figure 3 presents the impulse response functions of consumption and assets to aggregate
income shocks in panels (a) and (b).14 The responses differ substantially across models.
factor is stochastic, following Krusell and Smith (1998). We show that the incomplete information case
augmented by this feature can generate a reasonable wealth distribution. Crucially, we also show that the
main quantitative conclusions we describe below still hold in this scenario.

14Appendix C.2 describes how we compute impulse response functions.
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The response of aggregate consumption, on impact, is nearly 50% larger in magnitude when
agents face information frictions. For assets we see the opposite behavior: agents save more
in the full information setting. The full information case is the standard response that we
would expect to see when agents react to transitory income shocks: upon receiving the income
shock, consumption should increase modestly while most of the additional income should be
saved. Under incomplete information, agents cannot initially distinguish if the income shock
they are experiencing is an aggregate shock or the more persistent idiosyncratic shock, so
their consumption responds much more, and their savings responds less. In short, under
incomplete information agents tend to undersave in response to aggregate shocks, relative
to full information.

Panels (c) and (d) present the impulse response functions of idiosyncratic consumption
and assets to idiosyncratic income shocks, respectively. The relative responses to idiosyn-
cratic income shocks have reversed across models: under incomplete information agents tend
to save more of the income shock than under the full information scenario. This is because
the idiosyncratic component of income is very persistent, so agents with full information
increase their consumption nearly one-for-one. But with incomplete information, agents
cannot tell if they have received the near-permanent idiosyncratic shock, or the less persis-
tent aggregate shock. Therefore they oversave in response to idiosyncratic shocks, relative
to full information.

So why does the information friction make aggregate consumption more volatile? Id-
iosyncratic shocks are mean zero in the population, so their effects on consumption wash out
in the aggregate. Thus aggregate consumption is only determined by the aggregate income
shocks, to which households undersave and overconsume.15

Thus far we have show that under incomplete information, consumption is more respon-
sive to aggregate shocks. Is this effect heterogeneous? How does this consumption sensitivity
vary across households? We explore these questions in the next section.

3.2.3 Elevation and Homogenization of Consumption Elasticities to Aggregate
Shocks

Guntin et al. (2023) find that the elasticity of consumption to aggregate shocks is both
large and homogeneous across the income distribution.16 In effect, households respond to

15This washing out of idiosyncratic shocks is the same mechanism by which aggregate noise shocks cause
excess business cycle volatility in Adams (2023).

16GOP document this pattern in four small open economies with a range of income levels: Italy, Mexico,
Peru, and Spain. In contrast, we calibrate the model treating US states as small open economies, because
this is the setting in which we can test the model’s predictions for forecasting behavior (Section 5). However,
a reasonable concern is whether the large and homogeneous CIEs also characterize US states. In Appendix
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(a) Consumption IRFs to Aggregate Shock (b) Asset IRFs to Aggregate Shock

(c) Consumption IRFs to Idiosyncratic Shock (d) Asset IRFs to Idiosyncratic Shock

Figure 3: Impulse Responses to Income Shocks

Notes: Impulse response functions are calculated by subjecting the economy to an aggregate or idiosyncratic
income shock consistent with a one standard deviation forecast error, and comparing with a counterfactual
economy receiving no shock. The impulse response functions are reported as the difference in consumption
or assets, normalized by the size of the shock.
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transitory aggregate shocks as if they perceive them to be permanent. This is exactly how
the information friction in our model affects households. Thus, we find that introducing the
information friction to a heterogeneous agent model elevates and homogenizes consumption
elasticities to aggregate income.

To characterize this effect, we calculate the consumption-income elasticities to aggregate
income. Like GOP, we focus specifically on large aggregate shocks, which in our model affects
every agent across the income distribution proportionately.17 The consumption elasticity to
aggregate income Y G

t for individual i at time t is

CIEG
i,t =

log(Ci,t)− log(Ci,t−1)

log(Y G
t )− log(Y G

t−1)
(6)

We calculate the elasticities for each agent in our simulation for each information structure.
To ascertain the cross-sectional relationships with income and wealth, Figure 4 presents the
within-decile averages of CIEG

i,t, across models.18 In both cases deciles are calculated from
the ergodic distribution of the incomplete information model, so that levels are comparable
across information structures.

The elasticity of consumption to aggregate income is elevated in the incomplete infor-
mation model, where the average CIEG is 0.42, versus 0.28 for full information. Figure 4
panel (a) plots the average elasticities within asset deciles, where the information friction
(blue circles, with solid blue quadratic fit) substantially elevates the elasticities relative to
full information (red crosses, with dashed red quadratic fit) across most of the asset distri-
bution. The elasticities are only similar at very low levels of wealth, where agents have high
elasticities because they are likely to be constrained.

E.2.3, we investigate this concern using longitudinal data from the PSID, and find no evidence that this
pattern fails to hold in the US.

17We consider aggregate income changes larger than two standard deviations, although our conclusions
are not dependent on this particular threshold. In addition to following GOP, setting a threshold for income
changes prevents us from occasionally calculating excessively large CIE’s when the denominator happens to
be small.

18In addition to these elasticities to aggregate shocks, we also calculate the consumption elasticities to
generic income, and report their distribution in Appendix C.3.
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(a) Elasticities by Wealth (b) Elasticities by Income

Figure 4: Consumption-Income Elasticities to Aggregate Income

Notes: The solid and dashed curves are fit from quadratic regressions. The distributions of CIEG are each
calculated from a simulation of 2,000 households and 10,000 periods. We use the same sequences of aggregate
and idiosyncratic shocks for both models. The elasticity is calculated at the household level and averaged
within household groups corresponding to the asset or income deciles of the incomplete information model’s
ergodic distribution. Households are grouped based on their position in period t− 1 for a shock that occurs
in period t. The plotted elasticities only include periods with aggregate shocks exceeding two standard
deviations in absolute value.

The information friction’s homogenization effect is clear in the relationship between the
consumption elasticity and household income (Figure 4 panel (b)). Homogenization occurs in
panel (a) as well, but we focus on the relationship with income in order to mirror the findings
by GOP: the consumption elasticity is homogeneously large across the income distribution,
in contrast to the negative relationship implied by full information. Why does this occur?
Under full information, the response is heterogeneous due to the financial friction; low wealth
individuals are more elastic to transitory income shocks because they are near the borrowing
constraint. However, the response becomes more homogeneous as income becomes more
persistent; in the extreme case when all income shocks are permanent, all agents have the
same unit elasticity. Thus under incomplete information where households perceive aggregate
shocks as more persistent than they really are, they react more homogeneously.

Our results differ from GOP’s findings in two ways. First, we show that the information
friction elevates average CIEG, but not to levels as large as GOP’s estimates (0.7 − 1.2).
This is because agents in the model mistake aggregate income for idiosyncratic income, which
in the conservative baseline calibration only has autocorrelation ρI = 0.97. If idiosyncratic
income were more persistent, then the average CIEG would be even larger. Second, in some
countries GOP find that the relationship between the consumption elasticity and household
income is distorted so much as to be upward-sloping in income. This is possible in our
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model for some alternative calibrations. In particular, when idiosyncratic income has a
higher autocorrelation ρI , households mistakenly perceive aggregate shocks to be nearly
permanent, which elevates elasticities enough to be increasing with income. We study this
case in Appendix F.3.2.

3.3 Model Extensions

One assumption of the baseline model is that aggregate shocks affect all agents symmetrically.
Is this assumption critical for information frictions to deliver homogeneous CIEs? In order
to test the robustness of our model’s predictions, we explore two extensions that feature
heterogeneous effects of aggregate shocks: worker ex ante heterogeneity and unemployment.
This section summarizes the extensions and our findings; Appendix D provides greater detail
on the model setups, calibrations, solutions, and equilibrium properties.

3.3.1 Heterogeneous Skill Types

We now relax the assumption that all agents draw their income from the same stochastic
process. Instead, we assume that there are K types of agents that have different elasticities
to aggregate income. Agents of type k receive income determined by

lnYi,k,t = lnY I
i,t + αGk lnY G

t + lnκk

where Y I
i,t and Y G

t are the usual idiosyncratic and aggregate components. But now, type-k
households differ in their elasticity αGk with respect to aggregate income. Thus, different types
of households will have different sensitivities to aggregate income shocks. Additionally, κk
controls the type-k households’ average income level, so that sensitivity to aggregate shocks
can explicitly vary across the income distribution.

To discipline the model, we assign agents to one of two types: skilled and unskilled. Then,
using data from the CPS from 1977-2022, we calibrate the model to match the average skilled
wage premium (2.21), the average share of skilled workers (0.49), and the elasticities of skilled
and unskilled earnings to aggregate shocks (0.35 and 0.14, respectively).

Table 3 presents a summary of selected long-run moments for the baseline model and
both extensions. When workers have heterogeneous skill types, our main conclusions hold:
incomplete information increases consumption volatility, while elevating and homogenizing
the CIEG over the income distribution. Compared to the baseline, this extension has two
main differences. First, aggregate volatility and risk are generally higher. This is because the
higher income skill type is also more elastic to aggregate shocks. Second, the homogenization
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effect of the information friction is even stronger. Again, this is because skilled workers make
disproportionately larger mistakes after an aggregate shock, and make up a disproportionate
share of the high income deciles.

Moment
Baseline Het. Skill Unemployment

Full Incomplete Full Incomplete Full Incomplete
Consumption Volatility 0.0079 0.0121 0.009 0.013 0.0079 0.0103
Assets Volatility 0.0066 0.0038 0.008 0.0042 0.0068 0.0047
Average CIEG 0.28 0.42 0.33 0.45 0.27 0.31
Slope of CIEG curve -0.087 -0.023 -0.079 -0.002 -0.068 -0.017
Notes: Key moments for the baseline, heterogeneous skill types, and unemployment risk models
are presented for both information structures. Consumption (assets) volatility corresponds to the
standard deviation of log aggregate consumption (assets).

Table 3: Key Moments - Model Comparison

3.3.2 Unemployment

Another way that aggregate shocks can have heterogeneous effects across the income distri-
bution is by affecting workers’ extensive margin. To understand how this force affects our
results, we modify agents’ incomes to feature risk of job loss/entry. Crucially, these employ-
ment transition probabilities depend on aggregate log income. These probabilities are given
by

st = ψs lnY
G
t + s ft = ψf lnY

G
t + f

where st and ft denote the separation and job-finding rate in period t. The parameters ψs
and ψf control how the aggregate component of income affects transition into and out of
unemployment. If agents only observe their own job loss, it would tell them nothing about
the state of the aggregate economy. But correlated job losses tend to be salient, so we let
agents observe noisy signals zsi,t and zfi,t of the economy-wide job loss and finding rates:

zsi,t = st − s+ εsi,t zfi,t = ft − f + εfi,t

with independent noise shocks εsi,t ∼ N(0, σ2
εs) and εfi,t ∼ N(0, σ2

εf
). This complicates the

signal extraction problem and adds multiple additional state variables, so to keep the model
tractable, we assume that unemployed workers receive an unemployment benefit bYi,t that
is proportional to the income they would receive were they to have a job.

To calibrate this extension, we use state-level transition data from JOLTS to estimate
the parameters ψs, ψf , s̄, and f̄ . To calibrate the noisy signals of the transition probabilities,
we match empirical forecast error distributions using additional data from the SCE, which
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asks households to report expected probabilities that unemployment increases over a year.
Otherwise, our parameterization is unchanged from the baseline model. In particular, this
includes the parameters ρG and σG governing the aggregate earnings process Y G

t . In the
unemployment model, Yt is now earnings conditional on working. A potential concern is
that the low persistence of aggregate earnings in our baseline calibration could driven by
workers moving along the extensive margin. In Appendix A we show this is not the case:
aggregate earnings per employed worker has a similarly low autocorrelation.

The final columns of Table 3 report the effects of the information friction with the un-
employment extension. As before, the information friction increases aggregate consumption
volatility, and elevates and homogenizes the slope of the CIE curve. However, the effects are
attenuated relative to the baseline model. This is because the information friction is weaker
in the unemployment model. Households have additional information, as their noisy signals
of transition probabilities inform them about the aggregate state of the economy through.
With improved forecasting, agents make smaller mistakes, weakening the main mechanism
by which the friction amplifies the effects of aggregate shocks.

4 Interactions Between the Frictions
The main purpose of introducing dispersed information into a heterogeneous agents frame-
work was to understand how the information friction affect distributions, particularly the
elevation and homogenization documented by GOP, but also the general patterns of con-
sumption and wealth inequality that we discuss in Section 3.2.

However, the information friction and the financial friction interact in rich ways. In
this section, we show that the information friction attenuates the dynamics of wealth and
consumption inequality, while also introducing new cross-sectional heterogeneity, skewness,
and correlations for household forecasts. Additionally, in Appendix F we conduct a sen-
sitivity analysis, and learn that the information friction also attenuates the effects of the
financial friction on the wealth distribution, and reverses the effects of idiosyncratic risk on
the aggregate consumption elasticity.

4.1 Inequality Dynamics

One valuable feature of heterogeneous agent models is the ability to study the dynamics of
inequality. Introducing the information friction changes these dynamics in nontrivial ways.
To demonstrate these effects, Figure 5 plots the average response of inequality measures
to an aggregate income shock uGt of one standard deviation forecast error of log income.
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We calculate inequality as the standard deviation of logs, and for this exercise alone we
consider “assets” as cash-on-hand (i.e. financial assets plus current income) so that borrowing
constrained households do not have undefined log assets.

(a) Std. Deviation of Log Assets (b) Std. Deviation of Log Consumption

Figure 5: Inequality Response to Aggregate Shocks

Notes: Impulse response functions are calculated by subjecting the economy to a one standard deviation
aggregate income shock, and comparing with a counterfactual economy receiving no shock. The impulse re-
sponse functions are reported as the percentage point difference in the standard deviation of log consumption
or log assets, relative to the counterfactual economy, and normalized by the size of the shock.

Under full information, the standard model predicts that a positive aggregate income
shock should reduce consumption and asset inequality (Figure 5, dashed lines). This re-
duction occurs because all incomes increase proportionately, and income is distributed more
equally than assets. To understand this effect, it is useful to view a household’s “total wealth”
as the sum of financial wealth (i.e. the assets in the model) and human capital (i.e. the
present value of future income Yi,t) because, absent any financial friction, total wealth would
entirely determine consumption. The aggregate shock reduces the share of households’ total
wealth that is held as financial assets and increases the share held as human capital. As
usual, financial assets are distributed more unequally than income, so shifting towards hu-
man capital reduces consumption inequality (panel (a)). Similarly, the shift towards human
capital causes savings to be distributed more equally, reducing asset inequality (panel (b)).

Under incomplete information, agents have a stronger precautionary savings motive, so
they hold more financial assets. Therefore when the aggregate shock increases incomes, it
has a smaller effect on the shares of total wealth held as financial assets and human capital.
The shock induces a smaller shift towards the more equally distributed human capital than
under full information, attenuating the reductions in consumption and asset inequality.
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4.2 Forecast Heterogeneity

One implication of heterogeneity among agents is that there is heterogeneity of forecasts.
This is true of any model with a persistent income process. But the information friction
introduces an additional complication: there is heterogeneity of forecasts about aggregate
variables.

There is clear empirical evidence that households have heterogeneous forecasts about
the macroeconomy.19 This heterogeneity requires information frictions because FIRE agents
all form the same expectations. But there is an additional interaction between the friction
and the agent heterogeneity: in linear dispersed information models, the average agent
typically holds the average expectation, so the heterogeneity of expectations is irrelevant
for macroeconomic dynamics. A consequence of the heterogeneous agent framework is that
forecasts about aggregates are nonlinearly related to the endogenous distributions of wealth
and consumption.

What is the mechanism? Income is persistent, so higher income individuals expect higher
income in the future. Because they cannot disentangle idiosyncratic from aggregate incomes,
agents that have higher forecasts of their own income also have higher forecasts of aggregate
income. This relationship is strictly mechanical, following from the assumed income pro-
cess.20 But income is endogenously correlated with wealth and consumption, so forecasts of
aggregates are endogenously correlated as well.

Figure 6 plots the joint distributions of household forecasts of aggregate log incomes and
other quantities in the incomplete information model. The joint distribution with income is
plotted in panel (a): this relationship is mechanical, entirely implied by the assumed income
process and information friction. When households receive higher income, they tend to save,
so wealth is positively correlated with income and thus the forecast in panel (b). However,
households with higher income do not save it all; they also consume, which thus is positively
correlated with forecasts in panel (c).

19A large literature documents how heterogeneous forecasts about macroeconomic variables are correlated
with household decisions, including Vissing-Jorgensen (2003), Egan et al. (2021a), Egan et al. (2021b),
Coibion et al. (2021), and Coibion et al. (2022).

20Appendix B.5 derives this relationship.
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(a) Correlation with Income (b) Correlation with Assets (c) Correlation with Consump-
tion

Figure 6: Distributions of Expectations

Notes: The heatmaps display the ergodic joint distributions in the incomplete information model of: (1.)
household forecasts of aggregate income and (2.) either income, assets, or consumption. Red regions indi-
cate the highest density, while blue regions indicate the lowest. The dashed white lines mark the average
household, weighted by the x-axis quantity.

The joint distributions have three common patterns. First, the forecasts feature substan-
tial heterogeneity. Second, optimism about the aggregate economy is positively correlated
with income, wealth, and consumption. Third, the joint distributions are all skewed with
respect to the x-axis. This inequality is typical in heterogeneous agent models. But it has a
crucial interaction with the information friction: the skewness biases any weighted-average
of forecasts. This can be seen in Figure 6, where the dashed white lines plot the average
forecast, weighted by the corresponding x-axis variable. In all cases, this weighted average
is greater than the unweighted average, which is necessarily zero.

Our model is simple, but we expect these patterns hold in more general settings so long
as income is sufficiently correlated with wealth and consumption. In other models, the
consequences of these patterns depend on what matters for the macroeconomy: for example,
if it is the forecast associated with the average asset (rather than the average household)
that matters for the macroeconomy, then this unequal joint distribution can further distort
aggregate dynamics.

5 Corroborating Evidence for the Mechanism
In this section we examine whether household expectations of their future earnings respond
differently to idiosyncratic and aggregate shocks. If households have full information, then
their expectations should respond more elastically to idiosyncratic earnings, because the
idiosyncratic component is more persistent than the aggregate component. We test this
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prediction using survey data and find the opposite: household expectations are at least as
elastic to aggregate earnings. This supports the central mechanism in our model.

5.1 Data

To document the response of household earnings forecasts to idiosyncratic and aggregate
shocks, we employ data from the New York Fed Survey of Consumer Expectations (SCE).
The SCE is a monthly survey of aggregate and household-level economic conditions and
forecasts. It consists of a nationally representative rotating panel of approximately 1300
American households, which remain in the sample for up to 12 months. The survey has been
administered since 2013. For our purposes, we require data on both expected and realized
household earnings. Unfortunately, this pair is reported only in the auxiliary labor market
module of the survey, which is administered to participants every 4 months.

We primarily use two questions from the labor market module. First, to measure house-
hold expectations of future earnings, we use the household head’s forecast of their 4-month-
ahead earnings. This measure is the answer to:

What do you believe your annual earnings will be in 4 months?
dollars per year

which we interpret as the household’s forecast of instantaneous annualized earnings four
months into the future. The advantage of this measure relative to the earnings forecasts in
the general SCE survey, is that it is unconditional. The general SCE asks respondents to
forecast their earnings over the following year, but do so conditional on holding a job. We
prefer to use an unconditional earnings process, which both fits the model and corresponds
to the process that we estimate in the aggregate.

Second, to measure realized income, we use the household head’s current annualized
reported earnings. This measure is the answer to:

How much do you make before taxes and other deductions at your [main/current] job,
on an annual basis? Please include any bonuses, overtime pay, tips or commissions.

dollars per year

measured as gross wages or salaries, which respondents are more likely to report accurately.
This question is not asked to individuals who are unemployed or out of the labor force, to
whom we assign zero earnings. The earnings expectation question was added only in March
2015, and the last wave in our data set is July 2021, giving us 20 time periods. The data set
contains 11,930 unique households, appearing on average in 2.5 editions of the module. But
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not all respondents answer all questions; we are left with 14,378 observations with sufficient
data.

The general SCE survey contains additional household-level descriptors. Crucially, we
observe the state where respondents reside, so that we can connect households to state-level
shocks. We use additional descriptors as controls: we observe the industry in which the
head of household either works or was employed most recently, we observe their age and
education, and we observe demographic characteristics including ethnicity and gender.

5.2 Regressions

We divide a household’s log real detrended labor earnings yi,s,t into an idiosyncratic compo-
nent yIdioi,s,t and an aggregate component yAggrs,t :

yi,s,t = yIdioi,s,t + yAggrs,t

where i indexes households, s indexes their state, and t indexes the 4 month time period.
The aggregate component yAggrs,t is the mean earnings in state s and period t as reported
in the national accounts. We aggregate at the state level for several reasons. First, using
states rather than the entire US economy provides considerably more observations, which is
essential given the short history of the SCE. Second, state-level income is more volatile than
aggregate income, which gives our analysis additional power. Finally, we treat states as small
open economies, which matches the structure of our model and the motivating evidence from
Guntin et al. (2023).

Our main regression estimates how household forecasts depend on earnings:

f yi,s,t = βIdioyIdioi,s,t + βAggryAggrs,t +Xi,s,t + εi,s,t (7)

where i indexes households, s indexes their state, and t indexes the 4 month time period.
f yi,s,t is the household-level forecast of their 4-month-ahead earnings, yIdioi,s,t and yAggrs,t are the
realized aggregate and idiosyncratic earnings components, Xi,s,t is a vector of household-level
controls, and εi,s,t is an orthogonal residual.

This is a useful regression because it can directly test whether households’ forecasts
respond to income changes in the way that is consistent with FIRE. Proposition 1 formal-
izes this feature. When proving this result, we can relax the assumption that the income
components yIdioi,s,t and yAggrs,t are AR(1). Instead, we only assume that these components are
stationary ARMA processes with Gaussian innovations uIdioi,s,t and uAggrs,t . Write these processes
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in AR(∞) form as:

yIdioi,s,t =
∞∑
k=1

ρIdiok yIdioi,s,t−k + uIdioi,s,t yAggri,s,t =
∞∑
k=1

ρAggrk yAggri,s,t−k + uAggrs,t (8)

The innovations uIdioi,s,t and uAggrs,t are orthogonal to past income components, but may be
predicted by other information available to households.

Proposition 1 If households have full information and rational expectations, then the co-
efficients in equation (7) will satisfy

βIdio = ρIdio1 βAggr = ρAggr1

if the vector Xi,s,t contains the remaining relevant income lags.

Proof: See Appendix G.
Crucially, Proposition 1 holds whether or not households have additional news about

future income that is not observable to the econometrician. They may anticipate future in-
novations, but such information does not need to be controlled for when estimating regression
(7). Intuitively, future income innovations are orthogonal to current income components, so
this must also be true for the forecasts of FIRE households.

In the model, the earnings components are both AR(1). And if the components yIdioi,s,t and
yAggrs,t are each AR(1) with autocorrelation ρIdio and ρAggr respectively, then the forecast (7)
under full information would satisfy

[FIRE, AR(1)]: βIdio = ρIdio βAggr = ρAggr (9)

However, if households are unable to distinguish between aggregate and idiosyncratic earn-
ings components, then the forecast (7) would satisfy

[Incomplete Info., AR(1)]: βIdio = βAggr (10)

We test these information structures when estimating regression (7). Our calibrated
parameters ρIdio = 0.97 and ρAggr = 0.87 imply that if FIRE holds, then we should expect
βIdio > βAggr. Yet even though incomplete information implies βIdio = βAggr, our main
approach is not to test this equality, because failing to reject the null hypothesis is not
a confirmation of information frictions. Moreover, if the equality fails to hold, we care
whether it fails in the direction implied by full information, or whether it fails in the direction
that reinforces our model’s mechanism. Therefore, we perform a one-sided test with the
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alternative hypothesis that βAggr is larger than βIdio. If we reject the null hypothesis that
βIdio ≥ βAggr, then we conclude that FIRE fails in the direction that supports our model.

5.3 Results

Table 4 presents the results of forecast regression (7). Column (1) is the basic regression
with no additional controls. In column (2), we control for state-level effects on expectations.
We cannot include state-time controls, because aggregate earnings vary at the state level.
Column (3) includes additional worker-specific for industry, education, age, gender, and
race. In column (4) we further account for additional information available to households
by controlling for their lagged earnings; this is our preferred specification. Column (5) also
controls for lagged forecasts, which reduces the number of observations. Column (6) includes
lagged idiosyncratic and aggregate earnings separately even though our theory assumes that
households cannot distinguish between these two components. In column (7) we define
idiosyncratic and aggregate components using national instead of state-level earnings. And
finally in column (8), we instrument for yIdioi,s,t with yIdioi,s,t−1 in order to avoid bias induced by
transitory measurement error in households’ reported earnings.
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(1) (2) (3) (4) (5) (6) (7) (8)

Idio. Log Earnings 0.668 0.666 0.619 0.545 0.484 0.545 0.545 0.940
(0.0177) (0.0178) (0.0204) (0.0377) (0.0427) (0.0377) (0.0376) (0.0311)

Aggr. Log Earnings 1.313 1.539 1.357 1.129 0.934 1.786 2.112 1.982
(0.192) (0.265) (0.256) (0.355) (0.377) (0.696) (0.539) (0.408)

Lag Log Earnings 0.204 0.101 0.203
(0.0271) (0.0278) (0.0270)

Lag Forecast 0.218
(0.0318)

Lag Idio. Log Earnings 0.204
(0.0271)

Lag Aggr. Earnings -0.556
(0.756)

H0: βIdio ≥ βAggr p-value 0.000 0.001 0.002 0.047 0.110 0.036 0.002 0.005
Observations 14378 14378 14364 7469 7087 7469 7469 7469
R2 0.524 0.527 0.544 0.621 0.631 0.622 0.622 0.508
State F.E. X X X X X X X
Household Controls X X X X X X
Aggregation Level State State State State State State USA State
Regression Type OLS OLS OLS OLS OLS OLS OLS IV
Notes: Standard errors in parentheses, clustered at the state-month level. In all cases, the dependent variable
is the household-level log forecast of its 4-month-ahead annualized earnings. The reported p-value is from a
one-sided test with HA: βIdio < βAggr. In the IV regression, idiosyncratic income is instrumented for by its
one period lag.

Table 4: Effects of Log Earnings on Household Earnings Forecasts

In all cases, the coefficient on aggregate log earnings exceeds that of idiosyncratic log
earnings. Household forecasts of future earnings are more sensitive to changes in aggregate
earnings, even though their idiosyncratic earnings are much more persistent! The test results
formalize this conclusion. When we test the null hypothesis that βIdio > βAggr, as implied
by full information, we reject the inequality at the 5% level in our preferred specification (4).
This means that the relative response of household forecasts to aggregate earnings exceeds
what it would be under full information, or if full information failed but in the opposite
direction than implied by our model. And even in specification (5) when our statistical test
fails to reject, our estimates remain a better fit to the incomplete information model than
the full information model.

Our results validate the model’s mechanism: household forecasts are not more elastic
to idiosyncratic earnings. The forecast regressions in this section are the clearest test of
the information friction, but we run additional tests in Appendix E, where we estimate that
households have predictable forecast errors that overreact to aggregate earnings, and we learn
that household consumption is also more elastic to aggregate than idiosyncratic earnings.
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These tests lean on average responses of household expectations to aggregate shocks. But
could households respond heterogeneously across the income distribution? We explore this
question in the next section.

5.4 Expectation Elasticity Homogeneity

The main consequence of the information friction in our model is that agents’ income ex-
pectations are not more elastic to idiosyncratic shocks than to aggregate shocks. In both
our model and main empirical tests, we assume that the response of expectations to in-
come shocks are homogeneous across the income distribution. To establish whether this is a
reasonable assumption, we run two types of tests for heterogeneity by income.

First, we examine how the response of expectations to log income varies by income
decile. Specifically, we separate households into log income deciles in each time period
t− 1, then run our main regression (7) for time period t separately for each decile. Figure 7
reports the difference βAggr−βIdio between the estimated coefficients, and the 95% confidence
intervals associated with this difference. Panel (a) includes lagged log income as a control,
corresponding to the preferred specification in our main analysis (column (4) in Table 4);
panel (b) reports the simplest specification of forecasts on aggregate and idiosyncratic income
without any additional controls (corresponding to column (1) in Table 4). In both cases,
there is no obvious relationship between income level and the difference in how household
expectations respond to aggregate vs. idiosyncratic income. And for all deciles, the difference
is either statistically indifferent from zero, or households are more elastic to aggregate income.

(a) Fixed Effect Specification With Lag Income (b) Simple Specification

Figure 7: Estimated Coefficient Differences by Income Decile

Notes: The figure reports how the response of expectations to aggregate and idiosyncratic income vary by
income decile. Each panel plots the difference in estimated coefficients βAggr − βIdio from regression (7) by
income decile, and the associated 95% confidence intervals. Panel (a) controls for household fixed effects and
lag income, as in column (4) of Table 4. Panel (b) includes no additional controls.
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(1) (2) (3) (4) (5) (6) (7)

Idio. Log Earnings 0.581 0.573 0.568 0.495 0.414 0.495 0.495
(0.0409) (0.0409) (0.0422) (0.0472) (0.0481) (0.0472) (0.0470)

Aggr. Log Earnings 1.197 1.494 1.391 1.163 0.977 1.756 2.281
(0.585) (0.614) (0.611) (0.725) (0.738) (0.913) (0.560)

Idio. Log Earnings × Lag Percentile -0.000621 -0.000719 -0.000753 0.000198 0.00117 0.000198 0.000195
(0.000898) (0.000921) (0.000960) (0.000999) (0.00102) (0.000998) (0.000996)

Aggr. Log Earnings × Lag Percentile 0.00618 0.00127 0.000962 -0.000153 0.000462 -0.000106 -0.0000377
(0.00846) (0.00874) (0.00872) (0.0105) (0.0105) (0.0105) (0.00258)

Lag Forecast 0.193
(0.0306)

Lag Idio. Log Earnings 0.0977
(0.0319)

Lag Aggr. Earnings -0.590
(0.739)

γAggr − γIdio estimate 0.007 0.002 0.002 -0.000 -0.001 -0.000 -0.000
γAggr = γIdio p-value 0.437 0.825 0.849 0.974 0.948 0.978 0.926
Observations 7861 7861 7855 7469 7087 7469 7469
R2 0.611 0.617 0.620 0.632 0.639 0.632 0.632
State F.E. X X X X X X
Household Controls X X X X X
Aggregation Level State State State State State State USA
Notes: Standard errors in parentheses, clustered at the state-month level. In all cases, the dependent variable is the household-
level log forecast of its 4-month-ahead annualized earnings.

Table 5: Income Dependence in Effects of Log Earnings on Household Earnings Forecasts

Second, we directly test whether a household’s position in the income distribution affects
its response of expectations to income. We estimate the following regression that includes
interactions between a household’s lagged income percentile and its current aggregate and
idiosyncratic income components:

f yi,s,t = βIdioyIdioi,s,t+β
AggryAggrs,t +βLagpi,s,t−1+γ

IdioyIdioi,s,t×pi,s,t−1+γ
AggryAggrs,t ×pi,s,t−1+Xi,s,t+εi,s,t

(11)
where pi,s,t−1 denotes the percentile of household i’s earnings in the time t − 1 income
distribution. The remaining variables are unchanged from the main regressions in Section
5.2.

Then in order to evaluate how a household’s income level affects the relative response
of expectations to income components, we test whether γAggr − γIdio is different from zero.
Table 5 reports the results. Column (1) includes no additional controls, column (2) adds
state fixed effects, and column (3) adds the remaining household dummies. Column (4)
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controls for additional household information by including their lagged forecast, and column
(5) controls for even more information by including the lagged aggregate and idiosyncratic
earnings components. In column (6), the aggregate component is calculated at the national
level instead of by state.

In every case, the effect of income on the relative response to aggregate vs idiosyncratic
income is not significantly different from zero, in either a statistical or economic sense.
Consider the largest magnitude estimate: γAggr − γIdio = 0.007 implies that if household
rise in the income distribution by 10 percentiles, the difference between the elasticity to
aggregate and idiosyncratic components changes by only 0.07.

In this section, we learned that the behavior of household forecasts across the income
distribution is unlikely to feature heterogeneity that would affect our main conclusions. How-
ever, households can still feature forecasting heterogeneity in the data. Is their heterogeneity
consistent with our model’s mechanisms? We explore this question next.

5.5 Absolute Forecast Error Tests

In the Section 2 model, all households face the same process for information, and have
rational expectations, so all households are equally good forecasters. But an implication
of the information friction is that if some households did have better information about
the macroeconomy than others, they would be better forecasters of their own income. For
example, this is why the information friction is less impactful in the unemployment model
(Section 3.3).

To test this implication, we run the following regression:

|yi,s,m+4 − f yi,s,m| =
J∑
j=0

βj|πm+12−j − fπi,s,m−j|+Xi,s,m + εi,s,m (12)

On the left-hand side is the absolute forecast error for log earnings made by household i in
state s and month m. We denote the time period by m to distinguish it from the 4-monthly
time period used in our main tests. On the right-hand side are lags of |πm+12−j−fπi,s,m−j|, the
household’s absolute forecast error for 12-month-ahead inflation. Earnings forecasts are only
collected by the SCE every four months, but the inflation forecasts are collected monthly,
allowing us to introduce a number of lags of the absolute inflation forecast error without
substantially reducing the sample size.

Table 6 presents our estimates of equation (12). Columns (1-3) add lags of the absolute
inflation errors. Column (4) adds state fixed effects, and column (5) adds the lagged absolute
earning forecast error.
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(1) (2) (3) (4) (5)

Absolute Inflation Error 0.015 0.012 0.0075 0.0077 0.0064
(0.0024) (0.0033) (0.0042) (0.0042) (0.0041)

1 Month Lag 0.0055 0.0062 0.0061 0.0052
(0.0024) (0.0032) (0.0032) (0.0031)

2 Month Lags 0.0071 0.0072 0.0055
(0.0027) (0.0027) (0.0026)

Observations 7435 7010 5642 5642 5639
R2 0.023 0.025 0.031 0.041 0.061
State F.E. X X
Household Controls X
Notes: Standard errors in parentheses, clustered at the state-month level. Household
controls include human capital, demographic, and age fixed effects. In all cases, the
dependent variable is the magnitude of the household forecast error of log earnings.

Table 6: Earnings and Inflation Co-forecastability

Across specifications, we find that households that make more accurate inflation fore-
casts also make more accurate forecasts of their own earnings. When adding controls for
household characteristics, the coefficients on absolute inflation forecast errors are slightly
reduced, indicating that only some of a household’s superior forecasting ability is correlated
with its observable characteristics. Our findings support the information friction in our
model: a contributor to poor household earnings forecasting is poor information about the
macroeconomy.

6 Conclusion
In this paper we introduced dispersed information to an otherwise standard open economy
heterogeneous agents model. We demonstrated that the information friction increased con-
sumption volatility and reduced heterogeneity in household’s response to aggregate income
shocks. Then we documented evidence for our central mechanism in US forecast data.

Our central findings are robust, but there is further work to be done. How would the fric-
tion interact with capital accumulation in the model? Or a richer asset market or household
risks and decisions? What about closed economies? Regardless, it is clear that households
respond to aggregate shocks as if they are more persistent than they actually are, so this type
of information friction will be valuable in any setting where consumption volatility matters.
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Appendix

A Aggregate Income Persistence

In this section we estimate the autocorrelation of aggregate log labor earnings.

We measure average log real labor earnings yAggrs,t at the state level from the National

Accounts, for state s and year t. We define labor earnings as the sum of wages and salaries,

supplements to wages and salaries, and proprietors’ income. We deflate by the PCE deflator,

to match the procedure used by Guvenen et al. (2021) for idiosyncratic earnings. We estimate

the following panel regression:

yAggrs,t = ρAggryAggrs,t−1 + ds +Xs,t + εs,t

where ds denote fixed state-level controls, while Xs,t are further controls that vary with time.

We estimate this regression both by OLS and by 2SLS, instrumenting for yAggrs,t−1 with yAggrs,t−2.

The IV regressions allows for consistent estimation of ρAggr even when the error term εi,s,t

is MA(1). We take this approach in order to be comparable to Guvenen et al. (2021), who

allow individual earnings to contain an i.i.d. transitory term, which is equivalent to letting

earnings be ARMA(1,1).

Table 7 reports our estimates of ρAggr. Columns (1) report results for the regression with

state-specific as the only controls, which allows for the longest sample. We let our trends

be state-specific, given the well-known heterogeneity of growth rates across states (Barro

et al., 1991). This is our simplest specification and yields the largest estimate, but even in

this case it is significantly lower than the idiosyncratic persistence. In specifications (2) and

(3) we control for state-level demographics, as changes in worker composition affect average

earnings in a predictable way. We include data from the Current Population Survey on age,

gender, race, and education. Controlling for these factors, we estimate an autocorrelation

of 0.89 or 0.87 depending on whether our controls are additive or interacted with a time
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trend, respectively. The specifications (4)-(5) use the 2SLS approach in order to allow for

transitory i.i.d. shocks to earnings or measurement error. Allowing for these transitory

shocks reduces the estimated magnitudes even further: 0.84 and 0.82 respectively. Next,

we run our estimation for the 1994-2013 subsample, in order to most directly compare our

aggregate estimate with the idiosyncratic autocorrelation estimated from this sample period

by Guvenen et al. (2021), which is the value for ρIdio that we use in our calibration. Columns

(6) and (7) present these results, with autocorrelations of 0.80 or 0.59; during this time

period, income was generally less persistent than in the broader sample. Lastly, columns

(8) and (9) reproduce specifications (3) and (5), except normalizing earnings by employment

instead of by population: the coefficients are similar.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Lag Real Earnings 0.926 0.885 0.871 0.836 0.815 0.801 0.558 0.856 0.830

(0.006) (0.008) (0.008) (0.009) (0.009) (0.017) (0.030) (0.010) (0.011)
Observations 4701 2737 2737 2737 2737 1020 1020 2404 2385
R2 0.991 0.995 0.995 0.995 0.995 0.992 0.993 0.990 0.990
State Trends X X X X X X X X X
Demo. F.E. X X X
Demo. Trends X X X X X
Transitory Shocks X X X X X
Earnings Per: Pop. Pop. Pop. Pop. Pop. Pop. Pop. Emp. Emp.
Sample Period 1929-2022 1962-2022 1962-2022 1962-2022 1962-2022 1994-2013 1994-2013 1962-2022 1962-2022
Notes: Heteroskedasticity-consistent standard errors in parentheses. In all cases the dependent variable is
state-level average annual labor earnings.

Table 7: Aggregate Earnings Autocorrelations

Our preferred specification is column (5), given that we expect the effects of demographic

factors on income to change over time, due to female entry into the labor force, changing

attitudes towards race, and rising capital-skill complementarity (Krusell et al., 2000). How-

ever, we choose specification (3)’s 0.87 as our baseline calibration for ρAggr; smaller values

will strengthen the effects of the information friction in our model, and we aim to be con-

servative in our approach. It might be reasonable to choose a lower value, given the lower

estimates for the 1994-2013 time period that informs our idiosyncratic process. But, we are

concerned that this shorter time period might be susceptible to Nickell bias attenuating the

estimates, so we are wary of selecting the lowest estimates.
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B The Sum of Independent Income Processes

In this appendix, we characterize the time series properties of log income in the model. Index

households by i and time by t. Household log income yi,t is given by

yi,t = ayIi,t + byGt

where yIi,t is idiosyncratic and mean zero in the population for all t, while yGt is aggregate and

common to all households. a ≥ 0 and b ≥ 0 represent the relative weights of the idiosyncratic

and aggregate components on household income. Note that in our baseline scenario we have

a = b = 1.

B.1 The ARMA(2,1) Representation

The idiosyncratic and aggregate components are AR(1):

yIi,t = ρIy
I
i,t−1 + uIi,t

yGi,t = ρGy
G
i,t−1 + uGi,t

with uIi,t ∼ N(0, σ2
I ), uGt ∼ N(0, σ2

G), ρI ∈ (0, 1), and ρG ∈ (0, 1).

It is helpful to use lag operator notation to define these time series, which become:

yI = LρIy
I + uI

yG = LρGy
G + uG

y = Lϱ(L)y + w

where ϱ is a lag operator polynomial to be found, and w is a white noise process to be found.

It is well known that the sum of AR(1) processes is ARMA(2,1). The autoregressive
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coefficients parameters are ϱ0 = ρI + ρG and ϱ1 = −ρIρG:

y − (ρI + ρG)Ly + ρIρGL
2y = ayI + byG − (ρI + ρG)L(ayI + byG) + ρIρGL

2(ayI + byG)

= aρILyI + auI + bρGLyG + buG − (ρI + ρG)L(ayI + byG) + ρIρGL
2(ayI + byG)

= auI + buG − aρGLyI − bρILyG + ρIρGL
2(ayI + byG)

= auI + buG − aρGL(yI − ρILyI)− bρIL(yG − ρGLyG)

= auI + buG − aρGLuI − bρILuG ≡ z

The object z is MA(1). What is the structure of the MA term? To answer this, note that

Cov(z, Ljz) =


a2Var(uI)(1 + ρ2G) + b2Var(uG)(1 + ρ2I) j = 0

−a2Var(uI)ρG − b2Var(uG)ρI j = 1

0 j > 1

thus we can write

z = w + θLw

To finish characterizing the ARMA process, we need to know the variance of w, and the

value of θ. These quantities are related by two equations:

Var(z) = Var(w) + θ2Var(w)

Cov(z, Lz) = θVar(w)

which imply

0 = Var(w)2 − Var(z)Var(w) + Cov(z, Lz)2
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Apply the quadratic formula and take the larger root:

Var(w) = Var(z)
2

+

√(
Var(z)

2

)2

− Cov(z, Lz)2

Then calculate θ by

θ = Cov(z, Lz)/Var(w)

Finally, w can be expressed analytically in terms of the underlying shocks:

w = (1 + θL)−1z = z − θLz + θ2L2z − ...

w = (1 + θL)−1(I − ρGL)auI + (1 + θL)−1(I − ρIL)buG (13)

Altogether, the ARMA(2,1) representation is

yi,t = ϱ0yi,t−1 + ϱ1yi,t−2 + wi,t + θwi,t−1 (14)

B.2 The Effects of Shocks on Forecast Errors

How do shocks affect forecast errors? Equation (13) provides the answer, by writing the

household forecast error wt in terms of past aggregate and idiosyncratic shocks. Figure 8

represents this dynamic relationship by plotting the impulse response of forecast errors and

one-period-ahead forecasts to a unit aggregate shock.

Under full information, households make an immediate forecast error (panel (a)), but all

future effects of the aggregate shock are predictable, so the impulse response function is zero

thereafter. In panel (b), the full information forecast follows the true income IRF, shifted

one period ahead.

Under incomplete information, households make the same immediate forecast error (panel

(a)). But the aggregate affects future forecast errors as well. In every following period, the

forecast error is negative; households are repeatedly surprised that their incomes decayed
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(a) Forecast Errors (b) One-Period-Ahead Forecasts

Figure 8: Impulse Responses to an Aggregate Income Shock

Notes: The figures plot the impulse response of income forecast errors and one-period-ahead forecasts to a
unit aggregate shock in the baseline model. The solid blue line is the response under incomplete information.
The dashed red line is the response under full information. The impulse response functions are calculated
using the baseline calibration.

faster than they had predicted. This is because households think it is likely that their income

improvement was due to an idiosyncratic shock, which decays more slowly. Thus their one-

period-ahead forecast is perpetually above the full information forecast (panel (b)).

B.3 The VAR(1) Representation

Stack the variables as such:

yi,t ≡


yi,t

yi,t−1

wi,t


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Then yi,t is a VAR(1) with coefficient matrix B =


ϱ0 ϱ1 θ

1 0 0

0 0 0

 and innovation Cwi,t for

C =


1

0

1

:

yt = Byi,t−1 + Cwi,t

B.4 Income Forecasts at Various Horizons

This section derives the term structure of expectations under the information friction, which

are is used in Section 2.2.

Income follows the ARMA(2,1) process

yi,t = ϱ0yi,t−1 + ϱ1yi,t−2 + wi,t + θwi,t−1

so the one-period-ahead forecast is given by

E[yi,t+1|Ωi,t] = ϱ0yi,t + ϱ1yi,t−1 + θwi,t

because E[wi,t+1|Ωi,t] = 0.

The two-period-ahead forecast is given by

E[yi,t+2|Ωi,t] = ϱ0E[yi,t+1|Ωi,t] + ϱ1yi,t

beyond this horizon, the h-period-ahead forecast can be found recursively by

E[yi,t+h|Ωi,t] = ϱ0E[yi,t+h−1|Ωi,t] + ϱ1E[yi,t+h−2|Ωi,t]
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for h ≥ 2.

B.5 Forecasts of Aggregate Income

In the model, agents have no need to forecast the aggregate economy; they only need to

forecast their own income. However, it is possible to construct the forecasts that agents

would make, given the information friction that they face.

Agent i’s forecast of aggregate income conditional on their information set Ωi,t is

E[yGt+1|Ωi,t] = ρGE[yGt |Ωi,t]

= ρG
∞∑
j=0

ρjGE[u
G
t−j|Ωi,t]

How do agents form expectations over past shocks? Linear backcasting is easily expressed

in terms of current and past orthogonal forecast errors wi,t. Let WG denote the lag operator

polynomial that gives the aggregate component of wi,t from current and past aggregate

shocks. Per equation (13), this polynomial is given by WG(L) = 1−ρIL
1+θL

. Let WG
j denote the

j coefficient of this polynomial. Then the backcast is given by:

E[uGt−j|Ωi,t] =

j∑
k=0

Cov(uGt−j, wi,t−k)
var(wi,t−k)

wi,t−k

=

j∑
k=0

Cov(uGt−j,WG
j−ku

G
t−j)

Var(wi,t−k)
wi,t−k =

σ2
G

Var(wi,t)

j∑
k=0

WG
j−kwi,t−k (15)

Plugging in this backcasting formula gives the expression for the aggregate income forecast:

E[yGt+1|Ωi,t] =
ρGσ2

G

Var(wi,t)

∞∑
j=0

j∑
k=0

ρjGW
G
j−kwi,t−k

42



B.6 Limiting Backcasts of Shocks

Households are never able to learn the realizations of their income components Y G
t or Y I

i,t.

This is because every period, the household fewer new signals than the number of new

shocks that affect them. To see the consequences algebraically, consider the jth backcast of

the aggregate shock bcji,t ≡ E[uGt−j|Ωi,t]. wi,t is white noise, so per equation (15), the variance

is

Var(bcji,t) =
(

σ2
G

Var(wi,t)

)2
(

j∑
k=0

(WG
j−k)

2Var(wi,t)
)

The most accurate backcast is in the limit as j → ∞:

Var(bcji,t) ≤ Var(bc∞i,t) =
(

σ2
G

Var(wi,t)

)2
(

∞∑
j=0

(WG
j )

2Var(wi,t)
)

Let W I
j denote the jth coefficient in the polynomial W I(L) ≡ 1−ρGL

1+θL
:

= σ2
G

(∑∞
j=0(W

G
j )

2σ2
G

Var(wi,t)

)
= σ2

G

( ∑∞
j=0(W

G
j )

2σ2
G∑∞

j=0(W
I
j )

2σ2
I +

∑∞
j=0(W

G
j )

2σ2
G

)
< σ2

G

The variance of the backcast of uGt is necessarily less than the variance of uGt at all horizons.

Therefore households never learn uGt , which implies they never learn Y G
t nor Y I

i,t.

C Quantitative Appendix: Baseline Model

In this section we provide a description of the method we employ to solve our model and

compute impulse response functions, under full and incomplete information. Additionally,

we present an analysis of the differences between consumption-income elasticities that arise

between the two information structures.
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C.1 Solution Method

This section provides a description of the algorithm we use to numerically solve for the

equilibrium of the full and incomplete information cases.

We start by discretizing the income processes using the approach of Tauchen (1986). For

the full information case we discretize the aggregate and idiosyncratic processes separately

(we consider 11 points for each income process). For the incomplete information case we

write the income process as a VAR(1) (see B.3 for more details) and then discretize it. Note

that the VAR(1) case contains three variables. We allow for 11 points for each variable, so

the number of exogenous states is 11×11×11 = 1131. The asset grid is discrete and consists

of 250 points.21 We skew the allocation of points in the asset grid in order to have a better

coverage over lower asset levels.

After discretizing the income processes, we proceed to our time iteration method, which

is similar to the one described in Coleman (1990). We start with a conjecture for the asset

holdings policy function, A′, defined over the state space (Y,A), where Y represents the

vector of exogenous states of each model.22 The steps of the solution algorithm are the

following:

1. Start iteration j with a guess for A′
j(Y,A) ≥ −Ā, where −Ā denotes the borrowing

limit. Using this guess construct:

Cj(Y,A) = Y + A(1 + r)− A′
j(Y,A) (16)

Using (16), compute the discounted expected marginal utility

β(1 + r∗)EY ′|Y
[
uj(Y

′, A′
j(Y,A))

]
, (17)

21Our results do not change substantially by increasing the number of asset grid points, as our solution
method relies on first order conditions.

22Note that this guess corresponds to a matrix with dimensions NY ×NA, where NY and NA correspond
to the number of elements in the grid of income states and assets, respectively.
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where uj(Y,A) = Cj(Y,A)
−γ and EY ′|Y

[
uj(Y

′, A′
j(Y,A))

]
=
∫ Y
Y
[uj(Y

′, A′
j(Y,A))dF (Y

′|Y ),

with dF (Y ′|Y ) being the conditional probability density function of income.

2. Assume the borrowing constraint binds. Note that when the constraint binds we have

that consumption is Cj+1(Y,A) = Y +A(1+r)+Ā. We check whether this assumption

holds by calculating the residual of the Euler equation:

R(Y,A) = uj+1(Y,A)− β(1 + r)EY ′|Y
[
uj(Y

′, A′
j(Y,A))

]
. (18)

If R(Y,A) > 0, we keep the values for Cj+1(Y,A). Otherwise, the constraint does not

bind for that point of the state space and we discard Cj+1(Y,A). We then solve for

the value of Cj+1(Y,A) that satisfies

Cj+1(Y,A)
−γ = β(1 + r)EY ′|Y

[
uj(Y

′, A′
j(Y,A))

]
. (19)

3. Use the resource constraint to obtain the updated conjecture for asset holdingsA′
j+1(Y,A) =

Y + A(1 + r)− Cj+1(Y,A).

4. Check for convergence. If ||A′
j+1(Y,A) − A′

j(Y,A)|| < ϵ, then the problem is solved.

Otherwise, discard A′
j and use A′

j+1 as the new guess for the problem (go back to step

1).

C.2 Computation of Impulse Response Functions

In order to calculate the impulse response functions we follow a procedure similar to the

one used in Gilchrist et al. (2014). For the response to aggregate shocks, we simulate an

economy where the aggregate shock is set to its long-run average for 400 periods. Then we

shock the economy at period 401 and compare it to a counterfactual economy where the

aggregate shock remains at its long-run average. The difference in responses is what we

report as the impulse response function. For the response to idiosyncratic shocks, we follow
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a similar process with the exception that at period 401 every agent in the economy receives

a positive idiosyncratic shock of the same magnitude. We then aggregate responses using

the joint distribution of income and assets. This approach calculates the average impulse

response for individuals drawn from the steady-state distribution.

C.3 The Distribution of Consumption-Income Elasticities

In Section 3.2.3 we explored the consumption elasticity to aggregate income. It is also

possible to calculate the generic consumption-income elasticity; we do so in this appendix

and describe how it is distributed in the model economy.

We calculate CIEi,t, the consumption-income elasticity (CIE) of household i in period t:

CIEi,t =
log(Ci,t)− log(Ci,t−1)

log(Yi,t)− log(Yi,t−1)
(20)

Throughout the paper, we study the CIE rather than the well-known MPC in order to

directly compare with GOP’s evidence. Figure 9 presents the ergodic distribution of CIEs

under incomplete and full information. The incomplete information economy features smaller

CIEs on average because agents in this economy are worse forecasters and thus have a

stronger precautionary savings motive. Idiosyncratic shocks drive most income changes,

and agents with full information can immediately observe that these shocks have persistent

effects, so they change consumption more elastically than the incomplete information agents.

Some CIEs are negative because agents may see their income increase, but by less than they

expect, so they reduce consumption in response. This is less common under full information,

where the AR(1) structure makes such events less likely. The full information distribution

also has larger mass at one, because full information households are much more likely to be

borrowing constrained, as shown in Figure 2.

Why is aggregate consumption so much more volatile when information is incomplete if

the CIEs are lower than under full information? Crucially, the CIEs are different in response
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Figure 9: Ergodic Distributions of Consumption-Income Elasticities

Notes: The ergodic distributions of household-level CIEs are each calculated from a simulation of 2,000
households and 10,000 periods. We use the same sequences of aggregate and idiosyncratic shocks for both
models. CIEs in the plotted distributions are only included for households experiencing income changes of
one standard deviation or more in absolute value.

to idiosyncratic versus aggregate income changes. When we distinguish the generic CIE

from the consumption elasticity to aggregate income shocks, we find that the incomplete

information households are more elastic to aggregate income changes. This is the distinction

that we explore in Section 3.2.3.

How can the general CIEs be so different from the CIEs to aggregate shocks (Figure

4) which were much lower under full information? The full information households are

extremely elastic to idiosyncratic shocks which drive the majority of income changes, but

less elastic to aggregate income changes which are much less persistent. However incomplete

information households have similar elasticities to both types of shocks, because they cannot

distinguish between them.
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D Model Extensions

Section 3.3 described two extensions to the model that allow aggregate shocks to affect

households heterogeneously. In this appendix we provide additional details about solving

these models, and describing their equilibria. The first extension allows for heterogeneous

skill types, where each skill type differs in terms of how sensitive their labor income is to

aggregate income fluctuations. The second extension considers the possibility that agents

may lose their jobs. We assume that, under incomplete information, households cannot

perfectly observe the aggregate state of the economy while being unemployed (this is also

the case when employed, as described in our main model).

D.1 Heterogeneity Across Skill Types

In this section, we are extending our baseline model by relaxing the assumption that all

agents draw their income from the same stochastic process. In particular, we assume that

there are K types of agents that have different elasticities to aggregate income. The purpose

of this extension is to give our model more flexibility to accommodate heterogeneous skill

types that differ in terms of how their income depends on aggregate income.

D.1.1 Model

The model builds on the baseline case. The main departure arises in the number of agent

types that we consider. Agents of type k receive income determined by

lnYi,k,t = lnY I
i,t + αGk lnY G

t + lnκk

where Y I
i,t and Y G

t are determined as before. Note that in this setup, the income that type-k

household receives has an elasticity αGk with respect to aggregate income. Thus, household

types with larger αGk are more sensitive to aggregate income fluctuations than their peers

with lower elasticities. κk denotes an average income shifter, which we use include so that
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our model is able to match relative income of different type of agents.

Within-type average incomes in period t are given by

Ȳk,t = Ȳ I(Y G
t )α

G
k κk

where Ȳ I ≡
∫
i
(Y I

i,t)
αI
kdi is calculated by

Ȳ I = eVI/2

because (Y I
i,t) is log-normal with lnY I

i,t ∼ N(0, VI) where VI ≡ σ2
I

1−ρ2I
. Similarly, within-type

unconditional average incomes are

Ȳk = Ȳ Ie(α
G
k )2VG/2κk

where VG ≡ σ2
G

1−ρ2G
. The rest of the model setup is identical to the baseline model.

D.1.2 Quantitative Analysis

Calibration and Solution Method For tractability, we assume 2 types of agents: unskilled

and skilled. We use data on labor earnings reported in the CPS, and define “skilled” workers

be anyone with some college or more and “unskilled” to be the remainder. Using state-level

data from 1977-2022 we find that the average wage premium is 2.21, the average share of

skilled workers is 0.49, the elasticity of skilled earnings to state income is 0.35, and the

elasticity of unskilled earnings is 0.14.

We choose the elasticities αGU and αGS to match the difference in elasticities estimated in

the data (which we define as ∆S,U ≡ αGS −αGU , while keeping the average elasticity unchanged

from the baseline). Let s denote the share of skilled workers; this restriction gives the system

of equations:

sαGS + (1− s)αGU = 1
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αGS − αGU = 0.21

which implies αGS = 1.103 and αGU = 0.897. Then, we choose the remaining parameters κU

and κS to again keep the average income level unchanged, while matching the average skill

premium:
ȲS
ȲU

=
e(α

G
S )2VG/2κS

e(α
G
U )2VG/2κU

sȲS + (1− s)ȲU = Ȳ IeVG/2.

Replacing and solving for κU and κS, we have that κU = 0.63 and κS = 1.39. The last

parameter that we calibrate is the discount factor. We set β = 0.939 so that the average

wealth-to-income ratio in the incomplete information case is equal to 8, as in our baseline

calibration. Table 8 presents a summary of the newly calibrated parameters in this extension.

Parameter Interpretation Value Reference
β Discount factor 0.939 U.S. net-worth-to-earnings ratio of 8
αGU Sensitivity to aggregate income, unskilled 0.897 CPS
αGS Sensitivity to aggregate income, skilled 1.103 CPS

ȲS/ȲU Wage skill premium 2.21 CPS
κU Relative income mean, unskilled 0.63 Internal
κS Relative income mean, skilled 1.39 Internal

Table 8: Calibration - Heterogeneous Skill Types Model

The solution method is the same as the one used in the baseline, and is described in

detail in Appendix C.1. We follow the same method for discretizing the income process

that we used in the baseline scenario.23 Once obtained the policy functions, we proceed to

generate simulated time series from the model. For this, we assume that roughly half of the

population is of the unskilled type, while remaining half is of the skilled type (consistent

with the average share of skilled workers observed in the data).

Quantitative Results We start this section by providing a description of key long-run

moments for the full and incomplete information models, which we present in Table 9. The

results show that when we allow for heterogeneous skill types consumption and savings are
23The size of the state space under incomplete (full) information is 11× 11× 11× 250 (11× 11× 250).

50



more volatile and less autocorrelated than in the baseline. This occurs for both information

structures. What we also observe is that consumption is slightly lower than in the baseline,

which is fueled by lower savings. This happens in the full and incomplete cases.

When contrasting information structures within the heterogeneous skill type model, we

see that the same patterns of Table 2 arise here: aggregate consumption growth is substan-

tially more volatile (44%) under incomplete information. In the cross-section we see that the

information friction increases savings motives (larger savings) which reduces wealth inequal-

ity. This leads to observing higher levels of consumption under incomplete information.

Full Information Incomplete Information
Aggregate Dynamics
Consumption: Standard Deviation (log change) 0.009 0.013
Consumption: Autocorrelation 0.975 0.950
Assets: Standard Deviation (log change) 0.008 0.0042
Assets: Autocorrelation 0.997 0.997
Cross-Sectional Statistics
Income: Mean 1.38 1.38
Income: Coefficient of Variation 1.08 1.08
Consumption: Mean 1.51 1.57
Consumption: Coefficient of Variation 0.82 0.80
Consumption: Autocorrelation 0.99 0.99
Assets: Mean 6.28 9.53
Assets: Coefficient of Variation 1.58 1.24
Assets: Autocorrelation 1.00 1.00
Notes: Long-run moments are calculated from a simulation of 2,000 households and 10,000 periods.
We use the same sequences of aggregate and idiosyncratic shocks for both models.

Table 9: Long-run Moments - Heterogeneous Skill Types Model

Figure 10 presents the ergodic distribution for assets and consumption. Similarly to

what we observed previously, the information friction pushes households to save more due

to their inability to distinguish between aggregate and idiosyncratic shocks. This effect is

especially strong at the left tail of the distribution, where the credit- constrained or low

savings households are present. The larger asset holdings under incomplete information

allow households to experience larger levels of consumption due to the additional return on

their savings, which explains the shifted consumption distribution in panel (b).

Until this point, we see that allowing for heterogeneous skill types does not alter sig-
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nificantly the conclusions that we draw from the long-run moments of the model. In what

remains of this section we analyze whether the rest of the key findings of the baseline model

hold in this model extension. Specifically, we study the impulse response functions to aggre-

gate and idiosyncratic shocks to assess whether the “flipped” observed in the baseline model

are still present. Additionally, we also study if the result of elevation and homogenization

of the consumption-income elasticities to aggregate shock still prevails in this extension.

(a) Assets (b) Consumption

Figure 10: Ergodic Distributions - Heterogeneous Skill Types Model

Notes: The ergodic distributions are each calculated from a simulation of 2,000 households and 10,000
periods. We use the same sequences of aggregate and idiosyncratic shocks for both models. Both distributions
extend outside the axis range, but the right tails are omitted for readability.

Figure 11 presents the impulse response functions of consumption and asset holdings to

aggregate shocks, while Figure 12 does the same but for idiosyncratic shocks.24 Interestingly,

the responses to aggregate and idiosyncratic income shocks are very similar to those of the

case with homogeneous skill types. The main difference is a small one and is related to

the magnitude of consumption responses. In particular, we observe that under full and

incomplete information consumption responses tend to be slightly stronger to income shocks
24We construct impulse response functions for each type, within each information structure. The approach

we follow to do so is identical to the one described in Appendix C.2.
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when we have heterogeneous skill types. Note that stronger consumption responses imply

weaker savings responses.

(a) Consumption (b) Assets

Figure 11: Impulse Responses to an Aggregate Income Shock - Heterogeneous Skill Types
Model

Notes: Impulse response functions are calculated by subjecting the economy to a one standard deviation
aggregate income shock, and comparing with a counterfactual economy receiving no shock. The impulse
response functions are reported as the difference in consumption or assets, normalized by the size of the
shock.
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(a) Consumption (b) Assets

Figure 12: Impulse Responses to an Idiosyncratic Income Shock - Heterogeneous Skill Types
Model

Notes: Impulse response functions are calculated by subjecting a household to a one standard deviation
idiosyncratic income shock, and comparing it with a counterfactual household receiving no shock. The
impulse response functions are reported as the difference in consumption or assets, normalized by the size
of the shock.

The last result we want to highlight is that the consumption-income elasticity to aggregate

income shocks continues to exhibit the properties of elevation and homogeneization across

income deciles. Figure 13 presents the aforementioned elasticities across wealth and income

deciles.
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(a) Elasticities by Wealth (b) Elasticities by Income

Figure 13: Consumption-Income Elasticities to Aggregate Income - Heterogenous Skill Types
Model

Notes: The solid and dashed curves are fit from quadratic regressions. The distributions of CIEG are
each calculated from a simulation of 2,000 households and 10,000 periods. We use the same sequences of
aggregate and shocks for both models. The elasticity is calculated at the household level and averaged within
household groups corresponding to the asset or income deciles of the incomplete information model’s ergodic
distribution. Households are grouped based on their position in period t−1 for a shock that occurs in period
t. The plotted elasticities only include periods with aggregate shocks exceeding two standard deviations in
absolute value.

The average consumption-income elasticity to aggregate income shocks is 0.45 under

incomplete information, larger than its full information counterpart which is 0.33. The

elevation of the CIEG under incomplete information is still present. In fact, both elasticities

are larger than in the baseline scenario, suggest that having heterogeneous skill types tends to

further increase the response of consumption to aggregate income shocks. Another feature

we observe is that the homogenization of the CIEG across income deciles is also present

under incomplete information. The CIEG is quite stable across the income distribution.

In conclusion, we show that an extension that features households with different skill

types, this is, where they are asymmetrically affected by aggregate income fluctuations,

is able to replicate key findings in the baseline model. It is important to note that the

quantitative results of the heterogeneous skill types framework may crucially depend how the

income of unskilled and skilled households is affected by aggregate income. We acknowledge

this potential concern, so we provide a robustness analysis in Appendix F.3.3 where we
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vary the gap of elasticities to aggregate income across skill types. The main findings of

this robustness analysis show that the main quantitative results of this extension are not

substantially different if we were to consider alternative values for this elasticity gap.

D.2 Unemployment Risk

Our baseline setup assumes that at every point in time, households are employed and re-

ceive labor income. This assumption can be restrictive under incomplete information because

changes to the extensive margin of employment could potentially give information to house-

holds about the aggregate state of the economy. To address this concern we provide an

extension of our baseline model, where we allow agents to move from employed to unem-

ployed and vice versa.

D.2.1 Model

In every period, we assume that agents stochastically move into or out of an unemployment

state. While unemployed, we assume that agents receive an unemployment benefit which is

a fraction b of the income Yi,t they would have received if they had been employed. This

is a standard assumption (Krueger et al., 2016) but is especially valuable in our setting for

tractability purposes; the household’s forecasting problem is simplified because they always

receive the information that they would have received if employed.

The employment transition probabilities depend on aggregate log income. These proba-

bilities are given by

st = ψs lnY
G
t + s (21)

ft = ψf lnY
G
t + f (22)

where st and ft denote the separation and job-finding rate in period t, respectively.
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Information Structure We assume agents observe noisy signals of the transition proba-

bilities. Every time an agent finds or loses a job, they get information about the aggregate

state of the economy. And if they learn that other agents find or lose jobs, they learn even

more. This kind of small sample observation is a noisy signal of the true transition probabil-

ities with asymptotically normal error. For tractability, we simply model agents as receiving

signals with normal noise:25

zsi,t = st − s+ εsi,t (23)

zfi,t = ft − f + εfi,t (24)

with independent noise shocks εsi,t ∼ N(0, σ2
εs) and εfi,t ∼ N(0, σ2

εf
). The presence of noisy

signals implies that we need to redefine the information structure that agents face under

incomplete information.

The noise shocks are independent of other shocks in the model, so this structure reduces

to a single combined noisy signal of lnY G
t :

E[lnY G
t |zsi,t, z

f
i,t] = E

[
lnY G

t

∣∣∣∣zsi,tψs , z
f
i,t

ψf

]

zsi,t
ψs

and zfi,t
ψf

are noisy signals of lnY G
t with noise variances σ2

εs

ψ2
s

and σ2
εf

ψ2
f

. Therefore the

expectation is given by

=
Var

(
yGt
) σ2

εf

ψ2
f

Var (yGt )
σ2
εf

ψ2
f
+ Var (yGt )

σ2
εs

ψ2
s
+

σ2
εs

ψ2
s

σ2
εf

ψ2
f

zsi,t
ψs

+
Var

(
yGt
) σ2

εs

ψ2
s

Var (yGt )
σ2
εf

ψ2
f
+ Var (yGt )

σ2
εs

ψ2
s
+

σ2
εs

ψ2
s

σ2
εf

ψ2
f

zfi,t
ψf
,

which we write in terms of aggregate and idiosyncratic components by:

= ψc lnY
G
t + ψcε

c
i,t,

25This is a standard shortcut in these types of settings where the modeler would like agents to learn some
information but not the true state of the world (Lorenzoni, 2009).
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where

ψc ≡
Var

(
yGt
) σ2

εf

ψ2
f
+ Var

(
yGt
) σ2

εs

ψ2
s

Var (yGt )
σ2
εf

ψ2
f
+ Var (yGt )

σ2
εs

ψ2
s
+

σ2
εs

ψ2
s

σ2
εf

ψ2
f

with error

ψcε
c
i,t =

Var
(
yGt
) σ2

εf

ψ2
f

εsi,t
ψs

+ Var
(
yGt
) σ2

εs

ψ2
s

εfi,t
ψf

Var (yGt )
σ2
εf

ψ2
f
+ Var (yGt )

σ2
εs

ψ2
s
+

σ2
εs

ψ2
s

σ2
εf

ψ2
f

Then lastly define the single combined noisy signal ζi,t as

ζi,t = lnY G
t + εci,t

with εci,t ∼ N(0, σ2
εc), where

σ2
εc ≡

σ2
εf
σ2
εs

σ2
εf
ψ2
s + σ2

εsψ
2
f

With this structure, the noisy signal ζi,t follows an ARMA(1,1) process. With lag operator

notation, the Wold representation is:

ζ = yG + εc

=
1 + ϑL

1− ρGL
v

where v is the white noise forecast error process, satisfying

v =
1

1 + ϑL
uG +

1− ρGL

1 + ϑL
εc

with the scalar ϑ to be found. The time series vi,t is given by

vi,t = vui,t + vεi,t − ρGv
ε
i,t−1 (25)

where

vut = −ϑvut−1 + uGt vεi,t = −ϑvεi,t−1 + εci,t
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ϑ and Var(v) must satisfy two equations. First, Var((1+ϑL)v) = Var(uG+(1− ρGL)ε
c)

implies

(1 + ϑ2)Var(v) = σ2
G + (1 + ρ2G)σ

2
εc

Second, Cov((1 + ϑL)v, L(1 + ϑL)v) = Cov(uG + (1− ρGL)ε
c, LuG + L(1− ρGL)ε

c) implies

ϑVar(v) = −ρGσ2
εc

Thus ϑ is the stable solution to the quadratic equation

ϑ2 +
σ2
G + (1 + ρ2G)σ

2
εc

ρGσ2
εc

ϑ+ 1 = 0

Information Set Evolution The exogenous component of the household’s information set

now evolves by

Ωi,t = {Ωi,t−1, Yi,t, ζi,t} (26)

but there is a simpler recursive representation. Write log income yi,t in terms of the forecast

error ωi,t and the prior forecast:

yi,t = ωi,t + Ei,t−1[yi,t]

yi,t is still an ARMA(2,1) given by equation (14), but with the additional information from

the noisy signal, the original forecast errors wi,t are now partially forecastable. The expec-

tation of next period’s income becomes:

Ei,t[yi,t+1] = ϱ0yi,t + ϱ1yi,t−1 + θwi,t + Ei,t[wi,t+1]

The expectation of wi,t+1 is

Ei,t[wi,t+1] = E[wi,t+1|{ζi,t−j}∞j=0]
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but the idiosyncratic component of wi,t+1 is orthogonal to all lags of ζi,t, so by equation (13):

= E
[
1− ρIL

1 + θL
uGt+1|{ζi,t−j}∞j=0

]
= E

[
−θ − ρI
1 + θL

uGt |{ζi,t−j}∞j=0

]

To construct the expectation of this sum of uGt ’s, first consider the backcast of any lag of uGt :

E
[
LkuGt |{ζi,t−j}∞j=0

]
= E

[
LkuGt |{vi,t−j}∞j=0

]
=

k∑
j=0

Cov(uGt−j, vi,t−j)
Var(vi,t−j)

vi,t−j

=
k∑
j=0

(−ϑ)k−jσ2
G

Var(v) vi,t−j

Using these backcasts, the forecast of wi,t+1 becomes

E
[
−θ − ρI
1 + θL

uGt |{ζi,t−j}∞j=0

]
= vi,t

(−θ − ρI)σ
2
G

Var(v) (1 + θϑ+ θ2ϑ2 + ...)

+vi,t−1
(−θ − ρI)σ

2
G

Var(v) (−θ − θ2ϑ− θ3ϑ2 + ...) + vi,t−2
(−θ − ρI)σ

2
G

Var(v) (θ2 + θ3ϑ+ θ4ϑ2 + ...)

=
(−θ − ρI)σ

2
G

(1 + θ2ϑ2)Var(v)
1

1 + θL
vi,t

This forecast is AR(1) with autocorrelation −θ; denote the forecast by fwi,t ≡ Ei,t[wi,t+1].

Thus fwi,t is given recursively by

fwi,t = −θfwi,t−1 +
(−θ − ρI)σ

2
G

(1 + θ2ϑ2)Var(v)vi,t (27)

which gives ωi,t by

ωi,t = wi,t − fwi,t−1 (28)
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Then the VAR(1) representation for the income process becomes

yi,t ≡



yi,t

yi,t−1

wi,t

fwi,t



with coefficient matrix B =



ϱ0 ϱ1 θ 1

1 0 0 0

0 0 0 1

0 0 0 −θ


and innovation C

 ωi,t

vi,t

. ωi,t appears

because the forecast error for yi,t is also the forecast error for wi,t. With coefficient matrix

C =



1 0

0 0

1 0

0 cf,v


where cf,v ≡ (−θ−ρI)σ2

G

(1+θ2ϑ2)Var(v) , the VAR(1) system is

yt = Byi,t−1 + C

 ωi,t

vi,t


Finally, we need to determine the variance of ωi,t:

Var(ω) = Var(w)− Var(fw)

Var(fw) =
(

(−θ − ρI)σ
2
G

(1 + θ2ϑ2)Var(v)

)2 Var(v)
1− θ2
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Thus the variance of C

 ωi,t

vi,t

 is

V ar

C
 ωi,t

vi,t


 =



1 0

0 0

1 0

0 cf,v


 V ar(ω) 0

0 V ar(v)


 1 0 1 0

0 0 0 cf,v



=



V ar(ω) 0 V ar(ω) 0

0 0 0 0

V ar(ω) 0 V ar(ω) 0

0 0 0 c2f,vV ar(v)


Income and State Transitions Unemployment introduces an additional state variable. In

the baseline model, the household’s state is Ωi,t, the vector that encodes their income and

information. Now, we introduce an additional state Ui,t: their unemployment status, taking

value 1 if unemployed and 0 otherwise.

The agent’s perceived transition between unemployment states is:

Pr(Ui,t+1 = 0|Ui,t = 1) = Ei,t[ft+1] = f + ψfEi,t[Y G
t+1]

Pr(Ui,t+1 = 1|Ui,t = 1) = 1− Ei,t[ft+1] = 1− f − ψfEi,t[Y G
t+1]

Pr(Ui,t+1 = 0|Ui,t = 0) = 1− Ei,t[st+1] = 1− s− ψsEi,t[Y G
t+1]

Pr(Ui,t+1 = 1|Ui,t = 0) = Ei,t[st+1] = s+ ψsEi,t[Y G
t+1]

Accordingly, it becomes relevant to track agents’ forecasts of aggregate income Ei,t[Y G
t+1].
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It is useful to express this forecast in terms of the nowcast:

Ei,t[Y G
t+1] = ρGEi,t[Y G

t ]

and track the evolution of the nowcast recursively. The nowcast follows

Ei,t[Y G
t ] = ρGEi,t−1[Y

G
t−1] + αωωi,t + αvvi,t

where the coefficients αω and αv depend nonlinearly on the parameters of the income process

and σεc .

The forecast of aggregate income fGi,t ≡ Ei,t[yGt+1] now becomes a state variable since it

affects consumption and savings decisions of households. The updated VAR(1) formulation

for the exogenous state variables under incomplete information is then

yi,t ≡



yi,t

yi,t−1

wi,t

fwi,t

fGi,t



with coefficient matrix B =



ϱ0 ϱ1 θ 1 0

1 0 0 0 0

0 0 0 1 0

0 0 0 −θ 0

0 0 0 0 ρG


and innovation C

 ωi,t

vi,t

. The coef-
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ficient matrix is now

C =



1 0

0 0

1 0

0 cf,v

ρGαω ρGαv


so that the VAR(1) system is

yt = Byi,t−1 + C

 ωi,t

vi,t


Recursive Formulation With the information structure completely characterized we can

now provide a description of the recursive problem faced by households in the economy.

Under full information, the problem that the household faces is

V e(yI , yG, A) =max
A′

{(Ỹ (1− τ) + (1 + r)A− A′
)1−γ

1− γ

+ βE
[
(1− s(yG

′
))V e(yI

′
, yG′, A′) + s(yG

′
)V u(yI

′
, yG

′
, A′)

]}
(29)

V u(yI , yG, A) =max
A′

{(bỸ + (1 + r)A− A′
)1−γ

1− γ

+ βE
[
f(yG

′
)V e(yI

′
, yG

′
, A′) + (1− f(yG

′
))V u(yI

′
, yG

′
, A′)

]}
, (30)

where Ỹ = exp(yI+yG) and τ is a labor income tax used to finance unemployment benefits.26

V e and V u denote the value functions associated with being employed and unemployed,

respectively. The transition probabilities between states are a function of the separation
26We assume that the government sets a constant tax such that, on average, its budget constraint is

satisfied with equality. Whenever this is not the case, we assume that the government borrows/saves from
abroad (since we assume the economy is small and open) to finance any deficits, or to save any surpluses.
We numerically corroborate that the present value of the government surplus converges to 0, and that the
average average surplus is close to 0 as well.
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(s) and job-finding rates (f), which happen to be a function of the aggregate state of the

economy.

The recursive formulation of the household’s problem under incomplete information is

the following:

V e(X , A) = max
A′

{(Ỹ (1− τ) + (1 + r)A− A′
)1−γ

1− γ

+ βE
[
(1− s(fG))V e(X ′, A′) + s(fG)V u(X ′, A′)

]}
(31)

V u(X , A) = max
A′

{(bỸ + (1 + r)A− A′
)1−γ

1− γ

+ βE
[
f(fG)V e(X ′, A′) + (1− f(fG))V u(X ′, A′)

]}
. (32)

where X = (y, y−1, w, f
w, fG), and V e (V u) denotes the value function associated with being

employed (unemployed).

D.2.2 Quantitative Analysis

Calibration and Solution Method Most of the parameters remain unchanged with re-

spect to the baseline scenario.27 Since many target moments do not vary importantly, we

provide an explicit description of the calibration of those that either changed or were not

present before.

We start by estimating the transition probabilities from the data. Let st denote the

separation rate (the probability of leaving a job, conditional on employment), and ft the job

finding rate (the probability of finding a job, conditional on unemployment). Using state-

level data from JOLTS, employment data from the BLS, and earnings data from the BEA,
27The discount factor that we set in the base calibration yields an asset-to-income ratio of roughly 8, which

is the target observed in the data.
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we estimate the following equations

st = ψs lnY
G
t + s

ft = ψf lnY
G
t + f

We find that ψs = −0.00872 and ψf = 0.0399. To map the monthly JOLTS transition rates

to annualized probabilities in the model, we construct the monthly Markov transition matrix,

the 12th power of which gives the annual transition probabilities. The average annual values

are s = 0.048 and f = 0.952.

Based on this process for the transition probabilities, we calibrate the noise variance σ2
εc

to yield realistic household expectations behavior. Unfortunately, the SCE does not ask

individuals to forecast unemployment; instead, it asks for their perceived probabilities that

unemployment will increase over the following 12 months. We apply a probit regression to

clean the responses and provide a rational forecast of the actual probability at the state level.

Then, we use simulated method of moments to identify the value of σεc that reproduces the

empirical average error in reported probabilities relative to the rational expectation. We

estimate σεc = 0.15, which implies αω = 0.01 and αv = 0.05.

We set the labor income tax so that the average tax revenue equates the average un-

employment benefit payout in the economy. For the unemployment benefit parameter b,

we follow Krueger et al. (2016) and set b = 0.5. We then use the ergodic distribution to

obtain average tax revenues and unemployment payouts. We set τ = 0.0255 in the complete

and incomplete information models, which is the value such that the government’s lifetime

budget constraint is satisfied. Table 10 presents a summary of the calibration of the new

parameters in the unemployment risk extension.
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Parameter Interpretation Value Reference
ψs Separation rate elasticity -0.0087 JOLTS, BLS and BEA
s̄ Average separation rate 0.048 JOLTS, BLS and BEA
ψf Job-finding rate elasticity 0.040 JOLTS, BLS and BEA
f̄ Average job-finding rate 0.952 JOLTS, BLS and BEA
σεc Noise variance 0.150 SCE
b Unemployment replacement ratio 0.5 Krueger et al. (2016)
αω Y G

t nowcast coefficient on ωi,t 0.010 Internal
αv on vi,t Y G

t nowcast coefficient 0.050 Internal
τ Labor income tax 0.0255 Internal

Table 10: Calibration - Unemployment Risk Model

In order to numerically solve the model, we discretize the exogenous states following

Tauchen (1986). For the full information case we keep the same discretized outcomes, while

for the incomplete information we use a discretized version of the VAR(1) system presented

above. The asset grid is the same as in the baseline.28

The solution method that we employ is a variation of the one described in Appendix C.1.

The critical difference is that now we make guesses for policy functions A′
u and A′

e, and we

use the Euler equations for the employed and unemployed states to update them.

Quantitative Results Table 11 presents the long-run moments for the model with unem-

ployment risk, under full and incomplete information. Similarly to the findings described in

Section 3.2.1, we observe that aggregate consumption is substantially more volatile under

incomplete information (roughly 30% more), while the opposite occurs for savings (where

savings are on average 31% less volatile under incomplete information). These two patterns

are consistent with what we describe in the baseline model: the inability to distinguish

between aggregate and idiosyncratic shock leads to worse forecasting, poorer consumption

smoothing, and a stronger precautionary motive. This is corroborated by the large gap ob-

served in average assets, where households under incomplete information save on average

22% more than if they could distinguish between aggregate and idiosyncratic shocks.
28For the full information case we consider grids of 11 points for each income level. The size of the state

space is 11× 11× 250× 2. For the incomplete information scenario, we consider 13 points for y and its lag,
and 3 points for w, fw, and fG, respectively. The size of the state space is 13× 13× 3× 3× 3× 250× 2.
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Full Information Incomplete Information
Aggregate Dynamics
Consumption: Standard Deviation (log change) 0.0079 0.0103
Consumption: Autocorrelation 0.980 0.968
Assets: Standard Deviation (log change) 0.0068 0.0047
Assets: Autocorrelation 0.997 0.997
Cross-Sectional Statistics
Income: Mean 1.38 1.38
Income: Coefficient of Variation 0.94 0.94
Consumption: Mean 1.47 1.51
Consumption: Coefficient of Variation 0.80 0.80
Consumption: Autocorrelation 0.99 0.99
Assets: Mean 8.14 9.93
Assets: Coefficient of Variation 1.44 1.21
Assets: Autocorrelation 1.00 1.00
Notes: Long-run moments are calculated from a simulation of 2,000 households and 10,000 periods.
We use the same sequences of aggregate and idiosyncratic shocks for both models.

Table 11: Long-run Moments - Unemployment Risk Model

In the presence of unemployment risk, the cross-sectional behavior of assets and con-

sumption does not differ substantially with the one observed in the baseline model. Figure

14 presents the ergodic distribution of aggregate assets and consumption for the two models

when there is unemployment risk. Panel (a) shows that, as in our baseline scenario, the

information friction especially distortions asset levels close to the borrowing limit, which is

the area that agents wish to avoid when receiving a shock of an unknown nature (aggregate

or idiosyncratic). Thus, precautionary motives are still strong in comparison to the full

information case and hence push agents to save more aggressively.
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(a) Assets (b) Consumption

Figure 14: Ergodic Distributions - Unemployment Risk Model

Notes: The ergodic distributions are each calculated from a simulation of 2,000 households and 10,000
periods. We use the same sequences of aggregate, idiosyncratic and unemployment shocks for both models.
Both distributions extend outside the axis range, but the right tails are omitted for readability.

Do we observe similar patterns in terms of asset and consumption responses to aggregate

and idiosyncratic shocks? In order to answer this question, we replicate the analysis of

Section 3.2.2. In particular, we generate the equivalent impulse response functions to those

shown previously in Figure 3.29 Figures 15 and 16 present the impulse response functions of

aggregate consumption and assets to aggregate and idiosyncratic income shocks, respectively.

As in our baseline scenario, the magnitude of the shocks is one standard deviation forecast

error for log income.

The results presented in Figure 15 show that the consumption and asset responses to an

aggregate income shock differ importantly across information structures. In fact, the same

patterns observed in Section 3.2.2 arise: the response of aggregate consumption is much larger

under incomplete information, while the converse occurs for assets. Note that the aggregate
29We follow the same procedure for generating them. Note that since aggregate shocks affect the separa-

tion and job-finding rates, the on-impact effect will differ depending on whether the shock is aggregate or
idiosyncratic for the incomplete information case. Recall that this was not the case in our baseline speci-
fication since the on-impact effects were identical for aggregate and idiosyncratic shocks under incomplete
information.
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consumption responses tend to converge at a slightly shorter time horizon, because agents

can use their noisy observations of the labor market to learn about the aggregate state of

the economy. Nevertheless, responses are quite dissimilar, especially on impact, due to the

inability of agents to properly observe the nature of the income shock they are experiencing,

and the additional income volatility agents face due to unemployment risk.

(a) Consumption (b) Assets

Figure 15: Impulse Responses to an Aggregate Income Shock - Unemployment Risk Model

Notes: Impulse response functions are calculated by subjecting the economy to a one standard deviation
aggregate income shock, and comparing with a counterfactual economy receiving no shock. The impulse
response functions are reported as the difference in consumption or assets, normalized by the size of the
shock.

Figure 16 illustrates the responses of aggregate consumption and assets to an idiosyn-

cratic shock. Qualitatively speaking, we see the same ordering (with respect to the baseline

case) in terms of consumption and asset responses: consumption tends to under-react to an

idiosyncratic shock, while savings over-react. Interestingly, we have that the full and incom-

plete information responses of consumption to the shock are milder relative to the scenario

without unemployment risk. Intuitively, this occurs due to the presence of additional income

risk: because agents can become unemployed they decide to save a larger fraction of their

income, regardless of the nature of the shock they are experiencing. Additionally, we also
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see that the convergence in the consumption responses for the two information structures

occurs earlier than for the baseline scenario. Again, this is because the unemployment model

gives agents an additional signal from which they can learn about the aggregate economy.

(a) Consumption (b) Assets

Figure 16: Impulse Responses to an Idiosyncratic Income Shock - Unemployment Risk Model

Notes: Impulse response functions are calculated by subjecting a household to a one standard deviation
idiosyncratic income shock, and comparing it with a counterfactual household receiving no shock. The
impulse response functions are reported as the difference in consumption or assets, normalized by the size
of the shock.

So far we have shown that in an extension where there is unemployment risk and where

agents obtain noisy signals about separation and job-finding rates we still observe excess

consumption volatility under incomplete information. The last result that we revisit is

the low or nonexistent correlation between household consumption elasticities and income,

which was a central prediction of our baseline model. Figure 17 presents the consumption

elasticities to aggregate income under the presence of unemployment risk.30

30We follow the same methodology described in Section 3.2.3 to generate these results.
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(a) Elasticities by Wealth (b) Elasticities by Income

Figure 17: Consumption-Income Elasticities to Aggregate Income - Unemployment Risk
Model

Notes: The solid and dashed curves are fit from quadratic regressions. The distributions of CIEG are
each calculated from a simulation of 2,000 households and 10,000 periods. We use the same sequences
of aggregate, idiosyncratic and unemployment shocks for both models. The elasticity is calculated at the
household level and averaged within household groups corresponding to the asset or income deciles of the
incomplete information model’s ergodic distribution. Households are grouped based on their position in
period t− 1 for a shock that occurs in period t. The plotted elasticities only include periods with aggregate
shocks exceeding two standard deviations in absolute value.

We observe that the two main features observed in Section 3.2.3 are still present: there

is elevation and homogenization of the consumption elasticities to aggregate income. In

particular, the average consumption elasticity under full information is 0.27 while it is 0.31

in the incomplete information case. We also see that these responses tend to be much

more homogeneous across wealth and income deciles, mimicking the results observed in

our baseline scenario. Finally, we see that consumption elasticities are lower than in the

absence of unemployment risk, which is expected due to the additional precautionary motive

generated by the risk of becoming unemployed.

Introducing unemployment risk to the baseline model changes household decisions and

makes macroeconomic shocks more salient. And yet, because agents still do not have full

information, the main conclusions that we obtained from the baseline model remain un-

changed.
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E Additional Empirical Results

In this section we run several additional empirical tests of our information friction to com-

plement our findings from Section 5. First, we estimate that household forecasts overreact

to aggregate earnings relative to the rational expectation. Then, we turn to income and con-

sumption data from the PSID and find that consumption overreacts and underreacts similar

to forecasts.

E.1 Forecast Error Overreaction Tests

Specifically, we would like to estimate the regression

f yi,s,t − Ei,s,t[yi,s,t+1] = βIdioyIdioi,s,t + βAggryAggrs,t +Xi,s,t + εi,s,t (33)

Again, i indexes households, s indexes their state, and t indexes the 4 month time pe-

riod. f yi,s,t is the household-level forecast of their 4-month-ahead earnings, yIdioi,s,t and yAggrs,t

are the realized aggregate and idiosyncratic earnings components, and Xi,s,t is a vector of

household-level controls. Ei,s,t[yi,s,t+1] denotes the rational expectation of future income,

which is unobserved. However, if the right-hand side of equation (33) is in the household’s

information set, then we can instead estimate the regression

f yi,s,t − yi,s,t+1 = βIdioyIdioi,s,t + βAggryAggrs,t +Xi,s,t + εi,s,t − νi,s,t+1 (34)

because the rational forecast error νi,s,t+1 = yi,s,t+1−Ei,s,t[yi,s,t+1] is orthogonal to everything

in the time t information set. Note that the left-hand side is negative the usual forecast error

that appears in regression studies such as Coibion and Gorodnichenko (2015).

In the regression model (33), the coefficients βIdio and βAggr measure the overreaction

to idiosyncratic and aggregate income components. If households have full information and

73



Figure 18: Relative Overreactions of Forecasts to Shocks

Notes: The figure plots the term structure of income forecasts in the baseline model. The solid blue line is
the response of expectations to a unit forecast error under incomplete information, which is independent of
the shock that caused it. The dashed and dotted red lines are the responses of full information expectations
to aggregate and idiosyncratic shocks respectively.

rational expectations, then their values would be would be

[FIRE]: βIdio = 0 βAggr = 0 (35)

However, in the incomplete information model, household forecasts overreact to aggregate

income and underreact to idiosyncratic income. Figure 18 demonstrates by plotting the term

structure of expectations after an income shock (as in Figure 1, these are immediate term

structures rather than impulse response functions.) After an aggregate shock, households

forecasts overreact relative to the full information expectation. Conversely, after an idiosyn-

cratic shock household forecasts underreact, but the underreaction is very small. This is

because the variance of idiosyncratic shocks is much larger than the variance of aggregate

shocks, so when household incomes change, they expect that their forecast error was mostly

due to an idiosyncratic shock. In our regression model, these patterns imply βAggr ≫ 0 and

βIdio < 0. Our main mechanism relies on the aggregate overreaction, but we also test the
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relative overreaction compared to the idiosyncratic component:

[Incomplete Info.]: βIdio < βAggr (36)

To do so, we perform a one-sided test against the null that βIdio is larger.

(1) (2) (3) (4) (5) (6) (7) (8)

Idio. Log Earnings 0.0275 0.0292 0.0443 0.109 0.102 0.108 0.109 -0.0171
(0.0220) (0.0221) (0.0243) (0.0466) (0.0480) (0.0468) (0.0466) (0.0662)

Aggr. Log Earnings 0.501 0.918 0.849 0.755 1.016 -1.806 2.901 0.447
(0.387) (0.564) (0.572) (0.810) (0.904) (1.858) (1.339) (0.844)

Lag Log Earnings -0.0721 -0.0534 -0.0724
(0.0508) (0.0760) (0.0507)

Lag Forecast -0.0311
(0.0812)

Lag Idio. Log Earnings -0.0710
(0.0509)

Lag Aggr. Earnings 2.730
(1.870)

H0: βIdio ≥ βAggr p-value 0.110 0.056 0.078 0.212 0.155 0.850 0.019 0.287
Observations 7182 7182 7176 2641 2499 2641 2641 2641
R2 0.001 0.008 0.015 0.051 0.052 0.052 0.053 0.037
State F.E. X X X X X X X
Household Controls X X X X X X
Aggregation Level State State State State State State USA State
Regression Type OLS OLS OLS OLS OLS OLS OLS IV
Notes: Standard errors in parentheses, clustered at the state-month level. In all cases, the dependent variable
is the household-level log forecast of its 4-month-ahead annualized earnings. The reported p-value is from a
one-sided test with HA: βIdio < βAggr. In the IV regression, idiosyncratic income is instrumented for by its
one period lag.

Table 12: Overreaction of Household Forecasts to Earnings Components

Table 12 presents the results of forecast regression (34). We estimated the same set

of specifications as in our main regression analysis (Table 4). Column (1) is the basic

regression with no additional controls; overreaction is positive but small. In column (2), we

control for state-level effects on expectations. Column (3) includes the additional household-
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specific fixed effects discussed in Section 5. Columns (4) (matching our preferred specification

from Table 4) and (5) control for additional information in households’ information sets by

including both lagged earnings and lagged forecasts; column (6) controls for lagged earnings

components separately in case households have more information than we assume in the

model. Column (7) measures the aggregate earnings component at the national rather than

state level. Finally, wary of measurement error in surveyed earnings, column (8) instruments

for yIdioi,s,t with yIdioi,s,t−1.

Across nearly all specifications, we estimate overreaction to the aggregate earnings com-

ponent: households make forecast errors that are predictable from macroeconomic data. The

only exception is (6), where we have controlled for lags that we do not believe appear in

the household’s information set. Generally these tests have low power (and specification (6)

has especially large standard errors), but the regressions with more observations or using

aggregate shocks tend to have lower p-values. Still, the evidence is broadly consistent with

our model’s prediction that household forecasts overreact to aggregate earnings relative to

idiosyncratic earnings.

We do not find evidence that households underreact to idiosyncratic income however.

The estimates of βIdio are near zero, but usually positive. The small coefficients match our

model, but the signs do not (except in specification (8)). However this behavior is consistent

with other findings that individuals’ forecasts generally tend to overreact to information

(Bordalo et al., 2022). If we were to extend the model such that agents had diagnostic

expectations or another behavioral alternative used to fit these well-known patterns, they

could display this type of modest overreaction to idiosyncratic earnings. For this reason,

we focus on the relative overreaction to aggregate versus idiosyncratic components, which

supports the main mechanism of the model.
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E.2 Supporting Evidence from the PSID

This section employs panel data on consumption and earnings from the PSID to test the

model’s predictions for consumption reactions and its assumptions about idiosyncratic in-

come persistence.

E.2.1 Consumption Evidence

The model’s predictions are less clean for consumption, for which we are missing any number

of relevant mechanisms, and the data are poorer, which is why our main tests focus on

forecasts. But the simple model does imply similar behavior for consumption as it does for

expectations: under full information, consumption should be more elastic to idiosyncratic

than aggregate shocks, but under incomplete information the elasticities should be similar.

We can apply our tests from Section 5 to consumption data by estimating the regression

ci,s,t = βIdioyIdioi,s,t + βAggryAggrs,t +Xi,s,t + εi,s,t (37)

where i indexes households, s indexes their state, and t indexes the time period. ci,s,t is

the household-level consumption, yIdioi,s,t and yAggrs,t are the realized aggregate and idiosyncratic

earnings components, and Xi,s,t is a vector of household-level controls. As before, we perform

a one-sided test with the alternative hypothesis that βAggr is larger than βIdio. If we reject

βIdio > βAggr, then we conclude that FIRE fails in a way that supports our mechanism.

We estimate regression (37) using data from the PSID. Constructing a consumption series

from the PSID is nontrivial, so we adopt the consumption and wealth series constructed by

Arellano et al. (2023) for heads of dual-earning households. Our only deviation from their

baseline is that we use the pre-tax labor earnings series in order to match the rest of our

analysis in the paper. This consumption series begins in 2005 when the PSID’s expenditure

questions were expanded and runs every two years to 2017.

When testing the consumption data, we make two changes relative to our forecast tests
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in Section 5. First, we add controls for wealth, to most closely map the consumption decision

in our model. Second, we follow the standard approach when using the PSID and remove a

transitory component (such as measurement error) from idiosyncratic earnings; we do this

by instrumenting the current idiosyncratic earnings component with the previous period’s

observation.31

(1) (2) (3) (4) (5) (6) (7) (8)

Idio. Log Earnings 0.417 0.386 0.348 0.329 0.238 0.326 0.130 0.325
(0.0112) (0.0132) (0.0141) (0.0154) (0.0112) (0.0153) (0.0139) (0.0151)

Aggr. Log Earnings 0.602 0.527 0.506 0.443 0.334 0.721 0.265 0.216
(0.163) (0.172) (0.110) (0.113) (0.110) (0.118) (0.111) (0.111)

Log Wealth 0.0232 0.0363 0.0342 0.0445 0.0354 0.0173 0.0353
(0.00472) (0.00462) (0.00494) (0.00425) (0.00491) (0.00398) (0.00492)

Lag Aggr. Earnings -0.494
(0.114)

Lag Consumption 0.572
(0.0112)

H0: βIdio ≥ βAggr p-value 0.126 0.202 0.073 0.151 0.189 0.000 0.108 0.158
Observations 6652 6652 6652 6652 7554 6652 6652 6652
R2 0.183 0.195 0.257 0.275 0.289 0.277 0.526 0.274
State F.E. X X X X X X
Household Controls X X X X X
Aggregation Level State State State State State State State USA
Regression Type IV IV IV IV OLS IV IV IV
Notes: Standard errors in parentheses, clustered at the state-year level. In all cases, the dependent variable is the household-level
consumption. The reported p-value is from a one-sided test with HA: βIdio < βAggr. In IV regressions, idiosyncratic income is
instrumented for by its one period lag.

Table 13: Response of Household Consumption to Earnings Components

Table 13 presents the results of forecast regression (37). We estimated a similar set of

specifications as in our main regression analysis (Table 4). Column (1) is the basic regression

with no additional controls; column (2) adds a wealth control, and column (3) adds state-

level effects on expectations. Our preferred specification is column (4), which includes the

additional household-specific controls for education, race, and age. Column (5) estimates the
31This is approach is similar to that of Heathcote et al. (2010), who also model observed earnings in

the PSID as the sum of an i.i.d. transitory shock and a persistent AR(1) component. They identify the
persistence parameter using the relationship between first and second autocorrelations, which is the same as
our IV estimator absent any additional controls.
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previous specification by OLS instead of instrumenting for idiosyncratic income. Because of

the IV approach, we cannot include lagged income as an information control in the same

way as in the forecast tests, but column (6) adds a control for lagged aggregate earnings

while column (7) adds a control for lagged consumption. Finally, column (8) measures the

aggregate earnings component at the national rather than state level.

Across nearly all specifications, consumption is more elastic to aggregate earnings relative

to idiosyncratic earnings. The only exception is when we use national aggregate shocks

instead of state aggregate shocks. P-values are higher than in our forecast regressions, but

we broadly consistent with our conclusions from those tests: households are at least as elastic

to aggregate earnings as idiosyncratic earnings, contrary to our model’s full information

prediction. We conclude that the consumption overreactions provide evidence in support of

the mechanism implied by our information friction.

E.2.2 Income Evidence

Our baseline calibration assumed that the autocorrelation of the idiosyncratic earnings com-

ponent was ρI = 0.97, the value found by Guvenen et al. (2021) using administrative data on

the population of workers. We view this as the most trustworthy estimate in the literature,

but we can still compare it to the autocorrelation implied by the PSID data. We do so in

this section, and find comparable numbers to Guvenen et al. (2021), as well as to Heathcote

et al. (2010) who perform similar estimation using the PSID and also find ρI = 0.97.

We estimate the following panel regression:

yIdioi,s,t = ρIdioyIdioi,s,t−1 +Xi,s,t + εi,s,t

for household i, instate s, at time t. yIdioi,s,t is the idiosyncratic component of earnings and

Xi,s,t are the same household and state-specific controls employed in Section E.2.1. As in

the last section, we use the PSID panel series of pre-tax labor earnings, consumption, and
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wealth constructed by Arellano et al. (2023). To construct the idiosyncratic component,

we subtract state-level earnings from the national accounts. On the right-hand side, yIdioi,s,t−1

is instrumented with yIdioi,s,t−2 to remove purely transitory components such as measurement

error.

(1) (2) (3) (4) (5) (6) (7)

Idio. Log Earnings 0.951 0.960 0.958 0.938 0.739 0.928 0.940
(0.0127) (0.0143) (0.0157) (0.0178) (0.0143) (0.0201) (0.0176)

Log Wealth -0.00707 -0.00817 -0.00246 0.0234 -0.00322 -0.00336
(0.00421) (0.00439) (0.00479) (0.00396) (0.00478) (0.00478)

Lag Consumption 0.0284
(0.0125)

Observations 6511 6511 6511 6511 9084 6511 6511
R2 0.642 0.640 0.643 0.651 0.657 0.654 0.663
State F.E. X X X X X
Household Controls X X X X
Aggregation Level State State State State State State USA
Regression Type IV IV IV IV OLS IV IV
Notes: Standard errors in parentheses, clustered at the state-year level. In all cases, the dependent variable
is the household-level consumption. In IV regressions, idiosyncratic income is instrumented for by its one
period lag.

Table 14: Persistence of Household Idiosyncratic Earnings

Table 14 reports our estimates for several specifications from our consumption tests.

Column (1) is simply a regression of earnings on lag earnings, instrumented with an addi-

tional lag, column (2) adds wealth controls, and column (3) adds state fixed effects. Our

preferred specification in column (4) adds the remaining household controls, while column

(5) estimates this specification by OLS. Column (6) also controls for lagged consumption,

and column (7) constructs the idiosyncratic component by removing national rather than

state-level earnings.

We broadly find results consistent with the values estimated by Heathcote et al. (2010)

and Guvenen et al. (2021). Note that the PSID waves are every two years, so an annual
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autocorrelation of 0.97 would imply a biannual 0.94 autocorrelation, which is close to our

results. Only the OLS regression finds a lower autocorrelation, reflecting the necessary long

history of removing transitory elements from household-reported earnings in the PSID.32 We

confirm that the idiosyncratic component of income is substantially more persistent than the

aggregate component that we estimated in Appendix A.

E.2.3 Consumption-Income Elasticities in the United States

In this section, we estimate the consumption elasticity to aggregate income, defined in equa-

tion (6). Similar to GOP, we estimate the CIEG
d by income decile d. However, our esti-

mation approach must differ. GOP measure consumption and income changes around large

unexpected economic crises in four small open economies, and attribute the effects to large

aggregate shocks; however this approach is not possible in the US.33 Instead, we estimate

decile-by-decile how consumption changes respond to aggregate income changes. Specifically,

we estimate for each decile d

ci,s,t − ci,s,t−1 = βCIEd (yAggrs,t − yAggrs,t−1) +Xi,s,t + εi,s,t (38)

for households in income decile d in time period t−1. ci,s,t denotes detrended log consumption

of household i in states at time t, yAggrs,t denotes the aggregate component of income in state

s at time t, and Xi,s,t is a vector of controls.

We estimate the CIEG
d as the coefficient βCIEd . This requires panel data on consumption,

so again we employ the Arellano et al. (2023) consumption measure using the PSID. Data

for our regression begin in 2005 and appear biannually through 2017. Each decile regression

has on average 665 observations. As before, aggregate earnings is measured at the state level

using the national accounts, and both log income and log consumption are detrended using
32To be consistent, we also perform our aggregate persistence estimation with the same IV approach, and

it does not change our conclusions (Table 7).
33The closest analog for the US is the 2008 financial crisis, but restricting the PSID sample to changes

around this year would leave us with only about 120 observations of consumption changes per decile. When
we explored this option, many estimates were nonsensically large or negative, with massive standard errors.
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quadratic trends that are the same across households.

(a) Specification with Household Controls (b) Simple Specification

Figure 19: Estimated Consumption-Income Elasticities by Income Decile

Notes: The figure reports estimates of the Consumption-Income Elasticities to Aggregate Income in the US.
Each panel plots the estimated coefficient βCIE

d from regression (38) by income decile, and the associated
95% confidence intervals clustered at the state-year level. Panel (a) controls for household characteristics:
education, race, age, and state. Panel (b) includes no additional controls.

Figure 19 reports the estimates of βCIEd by decile, and the 95% confidence intervals based

on standard errors clustered at the state-year level. Panel (a) includes controls for education,

race, and age of the household’s main earner, as well as state fixed effects. Panel (b) reports

the simplest specification without any additional controls beyond a common constant. In

both cases, the average value of βCIEd across deciles is large (0.51 in panel (a) and 0.49 in

panel (b)) and increasing in income. This result is qualitatively consistent with the GOP

findings.

We view this exercise as a corroboration that we can address the pattern that GOP for

multiple countries in the context of US states. But our estimation is not a close substitute

for their results for two reasons. First, the PSID suffers from substantially smaller sample

sizes than any of the consumption datasets used by GOP, hampering our ability to estimate

consumption responses. Second, the aggregate income changes that we study are an order of

magnitude smaller than in GOP, further increasing our standard errors. And yet, uncertainty

aside, our point estimates suggest that GOP’s findings apply in broader settings.
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F Robustness and Sensitivity Analysis

This section provides a description and results of 3 robustness analyses that we run for

some of our model specifications. The first one consists of an alternative calibration for

the baseline model under full information, where we recalibrate the interest rate so that

the net worth to income ratio matches the one of the incomplete information model. The

second analysis involves the addition of a stochastic discount factor in order to generate a

better fit of the implied wealth distribution of the incomplete information model. The third

robustness analysis studies how sensitive the main conclusions of the baseline model and the

heterogeneous skill types extension are when varying specific parameters.

F.1 Alternative Calibration for the Baseline Model

In this section we present key results of our baseline model with an alternative calibration for

the full information scenario. In particular, we adjust the interest rate in the full information

case in order to match the same average net-worth-to-earnings ratio as in the incomplete

information case. The required value for the full information interest rate is r = 0.0268,

which is 68 basis points higher than under incomplete information (r = 0.02).

Table 15 presents the long-run moments for the full and incomplete information scenarios.

Note that the moments of the incomplete information case are unaltered since we do not

recalibrate any parameters. We see that the main message of Section 3.2.1 remains: under

incomplete information, aggregate consumption is more volatile and less autocorrelated.

Note that the gap is wider than in our baseline calibration because the larger full information

interest rate induces greater savings, enabling further consumption smoothing. In terms of

the cross-sectional moments, we see that the higher interest rate under full information leads

to larger average assets than in our baseline (by construction). The additional asset income

increases average consumption relative to incomplete information.

We present a selection of results that illustrate the main differences under the alternative
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Full Information Incomplete Information
Aggregate Dynamics
Consumption: Standard Deviation (log change) 0.0071 0.0121
Consumption: Autocorrelation 0.982 0.952
Assets: Standard Deviation (log change) 0.0052 0.0038
Assets: Autocorrelation 0.998 0.997
Cross-Sectional Statistics
Income: Mean 1.38 1.38
Income: Coefficient of Variation 0.95 0.95
Consumption: Mean 1.67 1.60
Consumption: Coefficient of Variation 0.80 0.79
Consumption: Autocorrelation 0.989 0.99
Assets: Mean 10.65 11.06
Assets: Coefficient of Variation 1.32 1.19
Assets: Autocorrelation 1.00 1.00
Notes: Long-run moments are calculated from a simulation of 2,000 households and 10,000 periods.
We use the same sequences of aggregate and idiosyncratic shocks for both models.

Table 15: Long-run Moments - Alternative Calibration

calibration. Figure 20 presents the ergodic distributions for assets and consumption. Due

to the higher interest rate, the entire consumption distribution under full information has

shifted to the right compared to the baseline calibration. This shift is generated by the

increase in asset and larger returns to savings.
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(a) Assets (b) Consumption

Figure 20: Ergodic Distributions - Full and Incomplete Information Models - Alternative
Calibration

Notes: The ergodic distributions are each calculated from a simulation of 2,000 households and 10,000
periods. We use the same sequences of aggregate and idiosyncratic shocks for both models. Both distributions
extend outside the axis range, but the right tails are omitted for readability.

In order to better understand how the information friction exacerbates aggregate con-

sumption volatility under the alternative calibration, Figure 21 replicates panels (a) and

(b) of Figure 3 and presents impulse response functions to an aggregate shock in the new

approach. Overall, we see little change in the dynamics of aggregate consumption and assets

in response to an aggregate shock, under full information. This is consistent with what we

found in Table 15. For completeness, we also present the dynamics of aggregate consumption

and assets in response to an idiosyncratic, which are summarized in Figure 22. The results

do not vary substantially with respect to the baseline calibration.
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(a) Consumption (b) Assets

Figure 21: Impulse Responses to an Aggregate Income Shock - Alternative Calibration

Notes: Impulse response functions are calculated by subjecting the economy to a one standard deviation
aggregate income shock and comparing with a counterfactual economy receiving no shock. The impulse
response functions are reported as the difference in consumption or assets, normalized by the size of the
shock.

(a) Consumption (b) Assets

Figure 22: Impulse Responses to an Idiosyncratic Income Shock - Alternative Calibration

Notes: Impulse response functions are calculated by subjecting a household to a one standard deviation
idiosyncratic income shock and comparing it with a counterfactual household receiving no shock. The
impulse response functions are reported as the difference in consumption or assets, normalized by the size
of the shock.
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Lastly, we compute the consumption-income elasticities under the alternative calibra-

tion. Figure 23 presents the ergodic distribution of this object while Figure 24 presents the

consumption-income elasticities to aggregate shocks.

Figure 23: Ergodic Distributions of Consumption-Income Elasticities - Alternative Calibra-
tion

Notes: The ergodic distributions of household-level CIEs are each calculated from a simulation of 2,000
households and 10,000 periods. We use the same sequences of aggregate and idiosyncratic shocks for both
models. CIEs in the plotted distributions are only included for households experiencing income changes of
one standard deviation or more in absolute value.
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(a) Elasticities by Wealth (b) Elasticities by Income

Figure 24: Consumption-Income Elasticities to Aggregate Income - Alternative Calibration

Notes: The solid and dashed curves are fit from quadratic regressions. The distributions of CIEG are each
calculated from a simulation of 2,000 households and 10,000 periods. We use the same sequences of aggregate
and idiosyncratic shocks for both models. The elasticity is calculated at the household level and averaged
within household groups corresponding to the asset or income deciles of the incomplete information model’s
ergodic distribution. Households are grouped based on their position in period t− 1 for a shock that occurs
in period t. The plotted elasticities only include periods with aggregate shocks exceeding two standard
deviations in absolute value.

The same patterns remain: CIEs are higher, on average, and relatively homogeneous

in response to aggregate shocks under incomplete information. This alternative calibra-

tion targeting full information wealth instead of the interest rate does not affect our main

conclusions

F.2 Stochastic Discount Factor & Wealth Distributions

The purpose of this extension is to provide a simple framework with incomplete information

that can generate wealth distributions closer US data. We assume that the households’

discount factor is stochastic. The discount factor takes values from a grid {β̄−κ, β̄, β̄+κ} and

has a transition probability matrix P β, following Krusell and Smith (1998). We calibrate κ

and β̄ so that the wealth distribution of the extended incomplete information model replicates

the wealth gini coefficient of the US according to (0.77, as estimated by Krueger et al., 2016)

and where the asset-to-income ratio is roughly 8. We set both parameters to be κ = 0.109
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and β̄ = 0.89. P β is set according to Krusell and Smith (1998):

P β =


0.995 0.005 0

0.000625 0.99875 0.000625

0 0.005 0.995


Our model now features an additional exogenous state, the discount factor. The calibration of

the model is identical to the one presented in Section 3.1 except for the discount factor. The

solution method is the same as the one documented in Section C.1 with a minor modification

in terms of how expectations are computed.34

Table 16 presents the distributional moments (fraction of wealth holdings by wealth

quintiles) of both models (baseline and the stochastic discount factor variant) and their

empirical counterparts. The empirical measures correspond to the ones reported in Krueger

et al. (2016), which are generated from the PSID and the SCF.

% Share Model Data
by: Baseline SDF PSID SCF (2007)

Q1 2.7 0.7 -0.9 -0.2
Q2 7.1 2.2 0.8 1.2
Q3 12.6 4.8 4.4 4.6
Q4 21.9 10.4 13 11.9
Q5 55.7 81.9 82.7 82.5

Table 16: Distributional Moments

Notes: Table 16 presents the distribution (in percent) of wealth holdings according to wealth quintiles.
Baseline stands for the baseline model under incomplete information. SDF stands for the variant of the in-
complete information model with a stochastic discount factor. The data column corresponds to the empirical
counterparts observed in the PSID and SCF, as reported in Krueger et al. (2016).

The baseline scenario, illustrated in column 2 of Table 16, shows that the predicted

shares of asset holdings across the wealth distribution are quite distant from the data. When

introducing the stochastic discount factor we observe a drastic improvement in the first of the

distribution of asset holdings relative to its empirical counterpart. In particular, we see that
34In the incomplete information setting, the number of grid points associated with exogenous states now

rises to 3993 (11× 11× 11× 3).
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the incomplete information model can match reasonably well the asset holdings distribution,

despite it not being a target of the calibration.

Figure 25 presents the ergodic distributions for assets and consumption across models.

We see that with a stochastic discount factor, the asset ergodic distribution has substantially

more mass towards very low asset holdings. This is due to the presence of impatient agents,

whose low savings are not compensated by the very patient ones. Due to lower asset holdings,

we also see that the consumption ergodic distribution is slightly shifted to the left of the

baseline one.

(a) Assets (b) Consumption

Figure 25: Ergodic Distributions - Baseline vs. Stochastic Discount Factor Model

Notes: The ergodic distributions are each calculated from a simulation of 2,000 households and 10,000
periods. We use the same sequences of aggregate and idiosyncratic shocks for both models. Both distributions
extend outside the axis range, but the right tails are omitted for readability.

Is the result of elevation and homogenization of consumption-income elasticities under

incomplete information still a feature in this variation? The answer is shown in the figures

below. Figure 26 presents the CIEs to an aggregate income shock. Interestingly, we see that

the CIE to aggregate income is larger when we introduce the stochastic discount factor, but

it maintains the same homogeneous (or flat) behavior across income deciles. Thus, one of

the main results of our baseline model remains in this model variation.
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(a) Elasticities by Wealth (b) Elasticities by Income

Figure 26: Consumption-Income Elasticities to Aggregate Income - Stochastic Discount
Factor

Notes: The solid and dashed curves are fit from quadratic regressions. The distributions of CIEG are each
calculated from a simulation of 2,000 households and 10,000 periods. We use the same sequences of aggregate
and idiosyncratic shocks for both models. The elasticity is calculated at the household level and averaged
within household groups corresponding to the asset or income deciles of the baseline incomplete information
model’s ergodic distribution. Households are grouped based on their position in period t − 1 for a shock
that occurs in period t. The plotted elasticities only include periods with aggregate shocks exceeding two
standard deviations in absolute value.

F.3 Parameter Sensitivity Analysis

F.3.1 The Borrowing Constraint

To ascertain the impact of the financial friction on our economy, we solve the model for

several values of the borrowing constraint, ranging from the no-borrowing baseline to the

natural borrowing limit.35

Figure 27 plots asset distributions under incomplete and full information for each of these

two extreme values. In both cases, reducing the lower bound on assets weakens the distortion

that precautionary savings has on the asset distribution: the distribution shifts left of zero,

with large masses of agents borrowing to smooth income shocks.

However, this effect is asymmetric across information structures. Under incomplete infor-
35The natural borrowing limit is −Ā = ymin/r, where ymin denotes the lowest possible value in the income

grid, which in logs is roughly −4 standard deviations. We construct the income grids to imply the same
natural borrowing limit for both models.
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(a) Incomplete Information (b) Full Information

Figure 27: Ergodic Distribution of Assets with the Natural Borrowing Limit

Notes: The ergodic distributions are each calculated from a simulation of 2,000 households and 10,000
periods, experiencing the same sequences of aggregate and idiosyncratic shocks. The light gray distributions
are the corresponding ergodic distributions when no borrowing is allowed (Figure 2).

mation, households’ rational forecasts are relatively inaccurate; the variance of their income

forecast error wi,t is strictly larger than under full information, because wi,t is affected by the

same contemporaneous shocks in addition to a linear combination of past shocks (Appendix

B.1). This perceived riskiness strengthens their precautionary savings motive. Therefore few

of them choose to be constrained even when unable to borrow, and so relaxing the constraint

has little effect on the distribution of assets. Conversely, full information households have

a weaker precautionary savings motive, often choosing to go to the constraint. When the

constraint is relaxed, many more households borrow than under incomplete information.

Therefore, we conclude that the information friction interacts to attenuate the financial

friction. By raising the precautionary savings motive, the information friction makes the

borrowing constraint less distortionary.
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F.3.2 Idiosyncratic Risk

How does the economy change when we adjust the dynamics of idiosyncratic income risk?

To address this question, we consider alternative values of ρI , the autocorrelation on the

idiosyncratic component of income Y I . This parameter has no effect on how full information

agents forecast aggregate income, but under incomplete information, increasing ρI makes

forecasting aggregate income more difficult by making the combined income process more

persistent (as demonstrated in Figure 1.) Figure 28 plots several summary statistics for a

range of values of ρI .

(a) Consumption Volatility (b) Aggregate CIEG

(c) Slope of CIEG-Income Curve (d) Wealth-Income Ratio

Figure 28: Sensitivity to Idiosyncratic Persistence

Notes: We consider the same sequence of shocks for both models, for every possible value of ρI . The baseline
ρI = 0.97 is marked with a dotted line in each panel. Each statistic is calculated from a simulation of 2,000
households and 10,000 periods, experiencing the same sequences of aggregate and idiosyncratic shocks.

When idiosyncratic income is more persistent, households increasingly mistake aggregate
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shocks for permanent income shocks. This strengthens the main mechanisms of our model.

Increasing ρI raises aggregate consumption volatility (Figure 28 panel (a)) and raises con-

sumption elasticities to aggregate income (panel (b)). Increasing ρI also increases the ho-

mogenization effect documented by GOP: the slope of the CIEG-income relationship rises

(panel (c)). If idiosyncratic income is sufficiently persistent, the slope can become positive.

GOP document a positive relationship for several countries, but this never occurs in our full

information model.

The autocorrelation ρI has a nonmonotonic effect on the precautionary savings motive.

Panel (d) makes this clear, plotting the ratio of average wealth to average income. At most

levels, increasing ρI increases household income risk. However, when idiosyncratic income

becomes extremely persistent, the precautionary savings motive weakens. For intuition,

consider the limit: when income shocks are completely permanent, there is no precautionary

savings motive at all, because consumption follows income one-for-one.

These effects are not common across information structures. The full information CIEG

is decreasing in ρI , while it rises under incomplete information. Why? Under full information,

the CIEG moves inversely to the wealth-income ratio, because households consume more

when they hold greater wealth, so their consumption is less elastic to aggregate income

shocks. The information friction breaks this relationship: when information is incomplete,

ρI monotonically increases the CIEG. Under both information structures, a larger ρI makes

consumption more elastic to idiosyncratic income shocks. But with the friction, households

cannot distinguish aggregate from idiosyncratic shocks, so their consumption choice must be

more elastic to both types of shocks.

F.3.3 Heterogeneous Skill Types

The elasticity difference across skill types ∆S,U ≡ αGS − αGU is a crucial parameter in our

heterogeneous skill type extension. Because of this, we provide a robustness analysis to

assess how key moments related to the main predictions of the model vary whenever we vary
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this parameter.

In our calibration of the model with heterogeneous skill types, we set ∆S,U = 0.21. We

now consider a wider range of values that ∆S,U can take. In particular, we allow ∆S,U ∈

[−0.5, 0.5]. Negative values of ∆S,U imply that the income of the unskilled is more sensitive

to aggregate income fluctuations relative to skilled agents, while for positive values the

opposite occurs. Figure 29 presents how consumption volatility, the average CIEG, the

slope of CIEG, and the wealth-to-income ratio vary whenever we vary ∆S,U .

(a) Consumption Volatility (b) Aggregate CIEG

(c) Slope of CIEG-Income Curve (d) Wealth-Income Ratio

Figure 29: Sensitivity to Skill Premium Elasticity Gap ∆S,U

Notes: We consider the same sequence of shocks for both models, for every possible value of the skill
premium elasticity gap between skilled and unskilled types. The baseline ∆S,U = 0.21 is marked with a
dotted line in each panel. Each statistic is calculated from a simulation of 2,000 households and 10,000
periods, experiencing the same sequences of aggregate and idiosyncratic shocks.
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Our sensitivity analysis shows that consumption volatility does not vary importantly for

most of the values of ∆S,U that we consider. The same happens for the aggregate CIEG and

the average wealth-to-income ratio.

We do observe that the slope of the CIEG-income curve is sensitive to ∆S,U . The

mechanism is straightforward: when unskilled lower earning households are more sensitive

to aggregate shocks, then low income households also have consumption that is more elastic

to aggregate shocks. Regardless, for all values of ∆S,U , the slope is consistently more positive

under incomplete information than full information.

To conclude, the robustness analysis of different skill premium elasticity gaps shows that

the main conclusions of the heterogeneous skill types extension do not change importantly

whenever varying this important parameter. We still observe that consumption is more

volatile (panel (a)) due to oversaving under incomplete information (panel (d)), and there

is an elevation (panel (b)) and homogenization (panel (c)) of the consumption elasticity to

aggregate income shocks.

G Proof of Proposition 1

Proof. Let Ωi,s,t denote the information set of household i in state s at time t. Its FIRE

forecast is

f yi,s,t = E[yi,s,t+1|Ωi,s,t] = E[yIdioi,s,t+1|Ωi,s,t] + E[yAggrs,t+1|Ωi,s,t]

The household’s information set Ωi,s,t includes the history of income components, as well as

possible information informing their forecasts of uIdioi,s,t+1 and uAggrs,t+1. Plug in with equation

(8):

=
∞∑
k=1

ρIdiok yIdioi,s,t+1−k + E[uIdioi,s,t+1|Ωi,s,t] +
∞∑
k=1

ρAggrk yAggri,s,t+1−k + Et[uAggrs,t+1|Ωi,s,t]

Thus, if all income component lags with non-zero coefficients are included in Xi,s,t, then

βAggr and βIdio will match ρIdio1 and ρAggr1 in Equation (7) if the news term E[uIdioi,s,t+1|Ωi,s,t] +
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Et[uAggrs,t+1|Ωi,s,t] is orthogonal to the income components. This is necessarily true because

uIdioi,s,t+1 is orthogonal to {yIdioi,s,t−k}∞k=0, u
Aggr
s,t+1 is orthogonal to {yAggrs,t−k}∞k=0, and all idiosyncratic

terms are orthogonal to all aggregate terms by definition.
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