
Firestorm: Multiplicity in Models with Full

Information ∗

Jonathan J Adams†

October 31, 2022

WORKING PAPER

Link to Most Current Version

Abstract

Dynamic stochastic models with full information and rational expectations

(FIRE) are not as well determined as is commonly believed. If the assumption

of causality is relaxed so that prices and decisions may anticipate future shocks,

then FIRE models generally feature multiple equilibria. The multiplicity is due

to the endogenous feedback from choices to information to choices, which in equi-

librium may contain self-fulfilling news about future shocks. I demonstrate the

multiplicity in several examples, including canonical asset pricing and business

cycle models. To motivate relaxing the causality assumption, I also study ex-

amples with apparent non-causality, even if the model is fundamentally causal.

Then I examine how the multiplicity arises in a dynamic programming problem

with decentralized markets.

JEL-Codes: C62, D50, D84, E32

Keywords: News, Self-Fulfilling Equilibria, Multiplicity, Rational Expectations

∗I am grateful for many helpful comments, especially from Philip Barrett, Martin Beraja, Ryan

Chahrour, Kris Nimark, Iván Werning, and Stephen Wright. All errors are my own.
†University of Florida. Website: www.jonathanjadams.com Email: adamsjonathan@ufl.edu

1

http://users.clas.ufl.edu/adamsjonathan/files/firestorm.pdf
http://www.jonathanjadams.com
mailto:adamsjonathan@ufl.edu


1 Introduction

Mainstream dynamic stochastic models have more equilibria than previously under-

stood. Theories typically assume that equilibria must be functions of current and past

shocks. But if the causality assumption is relaxed, then mainstream models generally

feature multiple equilibria. This multiplicity is due to the full information assumption:

if agents in the model can observe endogenous variables, then their information sets

are endogenous too. The endogenous variables and information sets are not jointly de-

termined by the assumptions of a typical full information rational expectations (FIRE)

model. Instead, equilibria feature self-fulfilling news.

The causality assumption is overly restrictive. In business cycle models, equilib-

ria are functions of stochastic shocks. But it is not obvious that equilibria must be

causal functions of these shocks. Indeed, a large empirical literature studying news

in the macroeconomy concludes that at least a portion of aggregate shock processes

are anticipated.1 This is unsurprising, given that common shocks such as “produc-

tivity” or “demand” are not fundamentally unpredictable. Rather, productivity and

demand shocks are functions of many underlying processes, and information about the

underlying processes can appear to be non-causally related to the aggregate shocks.2

Moreover, such information can arise endogenously, manifesting as self-fulfilling news

about future shocks.

How can news be self-fulfilling? Agents’ information sets include everything they

observe. The full information assumption implies that this includes both fundamental

shocks and endogenous macroeconomic variables. But endogenous variables are de-

termined by forward-looking decisions, so they depend on information sets. This is a

feedback mechanism: the information set determines the information set! Is there a

unique solution to this system? Not in general in FIRE models.

What of the existing uniqueness theorems? Macroeconomists rely on well-known

regularity conditions (e.g. Blanchard and Kahn (1980)) to ensure that a model has

1Papers such as Cochrane (1994), Beaudry and Portier (2006), and Beaudry and Lucke (2010)

document evidence for large business cycle effects of news using vector autoregressions. Beaudry and

Portier (2014) survey the news literature at large.
2Many empirical papers relax the “fundamentalness” assumption that shocks must be causally

invertible from observed time series; examples include Lippi and Reichlin (1994), Mertens and Ravn

(2010), Lanne and Saikkonen (2013), Forni, Gambetti, Lippi, and Sala (2017) and Chahrour and

Jurado (2021).
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a unique equilibrium, but crucially, this uniqueness is conditional on the process for

information. The Blanchard-Kahn condition or its generalizations do not guarantee

that any joint determination of information and decisions has a unique solution.

The multiplicity is pervasive. In a simple asset pricing model, I show that in general

there are multiple equilibria that are consistent with the full information assumption.

I explore the multiplicity with several numerical examples. First I demonstrate how

to construct valid equilibria from non-causal information sets. Then I consider several

mechanisms to motivate non-causality, including a model with non-invertible stochastic

processes, a model where agents receive exogenous news about the future, and a model

of complexity where the shocks process is determined by an underlying unobservable

multivariate process. Next, I move on to a general business cycle model, prove that it

features multiplicity, and numerically demonstrate multiple equilibria in the canonical

RBC model.

Are equilibria with self-fulfilling news just a mathematical curiosity that can be

safely disregarded? I argue that they are not: equilibria with self-fulfilling news are

observationally equivalent to traditional equilibria given appropriate initial conditions

for the information set. So there is no way to uniquely select one equilibrium with-

out self-fulfilling news. In other words, even if equilibria with self-fulfilling news are

assumed away, the potential for multiplicity remains, with the economy’s long run

dynamics determined by the model’s initial conditions. This is because the same in-

formation feedback that generates self-fulfilling news also generates self-perpetuating

news.

The implication is a critique of FIRE in macroeconomics: full information rational

expectations models are incomplete. Economic objects such as prices and quantities

must be determined jointly with information processes, because they are both endoge-

nous. And full information models do not determine them uniquely. Fortunately,

tools to resolve this incompleteness already exist. The long literature relaxing FIRE in

macroeconomics includes many theories in which information and actions are jointly

determined in equilibrium, including the seminal Lucas (1972). If full information fails,

then information frictions or bounded rationality are necessary.

The multiplicity in this paper is most closely related to a set of papers in the infor-

mation frictions literature that feature agents learning from endogenous signals, joint

determination of information sets and actions, and multiple equilibria. Macroeconomic

examples include Benhabib, Wang, and Wen (2015), Gaballo (2018), and Chahrour and
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Gaballo (2020) among others. Thematically related is Morris and Shin (1998) which

studies global games with multiple equilibria, such as bank runs or currency crises,

and shows that abandoning full information resolves the multiplicity. However, while

Morris and Shin’s resolution to the multiplicity is the same (relaxing full information),

the source of their multiplicity is entirely different, stemming from strategic interaction

in the global games. The models I study feature no such strategic interaction; rather,

the multiplicity is due entirely to the information endogeneity.

The remainder of the paper is organized as follows. Section 2 describes self-fulfilling

news in a simple two-period model, to demonstrate most clearly how multiplicity can

arise mathematically, although the additional equilibrium is unintuitive and unrealis-

tic. Section 3 explores the multiplicity in an asset pricing model with many periods,

where some concerns from the two-period model do not apply. Section 4 argues that

self-fulfilling equilibria cannot be assumed away. Section 5 motivates the possibility of

non-causality, and shows how multiplicity is possible even when the model is funda-

mentally causal. Section 6 demonstrates how the multiplicity arises in general dynamic

macroeconomic models. Section 7 concludes.

2 An Asset Pricing Model With Two Periods

I introduce the concept of self-fulfilling news in a two period asset pricing model.

Relaxing the assumption that prices must be causal allows for perfect foresight to be a

valid equilibrium. But even though it satisfies the technical requirements, the perfect

foresight equilibrium is disregardable for a number of reasons.

Consider a standard two-period asset pricing model. In the first period, agents

trade an asset at price p1 which pays stochastic dividend x2 ∼ N(0, 1) in the second

period. Agents with information set Ω1 price the asset by

p1 = E[x2|Ω1] (1)

Agents have full information, so their information set includes the price:

Ω1 = p1 (2)

Definition 1 defines equilibrium for this two period asset pricing model:

Definition 1 A full information equilibrium of the two-period asset pricing

model is a price p1 and information set Ω1, given a stochastic dividend x2 such that:
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1. The price p1 satisfies the asset pricing equation (1)

2. The information set is given by (2)

If the price must be a causal function of dividends, then this model has only one

equilibrium, which I call the nescient equilibrium. The nescient price pN1 is

pN1 = E[x2|ΩN
1 ] = 0

which is rationalized by the nescient information set ΩN
1 = pN1 = 0. This is the

standard equilibrium: agents have no information about the future, so they forecast

by the unconditional expectation.

But if the price is allowed to be non-causal, potentially containing information

about the future, then there is also a non-nescient equilibrium.3 This non-nescient

price pPF1 is

pPF1 = x2

This price perfectly predicts the dividend. It satisfies the pricing equation (1):

pPF1 = E[x2|ΩPF
1 ] = x2

because the non-nescient information set is just the future dividend:

ΩPF
1 = pPF1 = x2

The non-nescient equilibrium {pPF1 ,ΩPF
1 } is plainly absurd. It satisfies the technical

definition of an equilibrium, but can usually be ignored. It has several fundamental

problems, each of which might justify assuming it away:

1. The non-nescient equilibrium features perfect foresight, which may be unrealistic

and defeats the purpose of considering a stochastic problem at all.

2. The non-nescient equilibrium is not robust to delayed observation of the price:

agents must both see the price and value the asset simultaneously. What if the

market is a sealed bid auction?

3The perfect foresight equilibrium discussed here is the unique non-nescient equilibrium that is

linear in the exogenous dividends. There may exist other non-nescient equilibria that are nonlinear

or depend on extrinsic noise.
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3. Nor is the non-nescient equilibrium robust to noisy observation of the price: if

traders observe the equilibrium prices with even a trivial amount of noise when

determining their expectations, the non-nescient equilibrium disappears.

These are each fundamental problems for the non-nescient equilibrium; it can reason-

ably be disregarded.

Is this conclusion – that non-nescient equilibria can be ignored – robust to gen-

eralizing the model? No: when there are many time periods, each of these concerns

no longer holds. There is a continuum of non-nescient equilibria beyond the perfect

foresight case, these equilibria are still valid even when the price is observed with a

delay or with noise, and agents know with certainty which equilibrium they are in. The

next section explores this generalization.

3 An Asset Pricing Model With Many Periods

This section introduces the multiplicity in a simple asset pricing model. I prove a

general condition for multiplicity of stationary equilibria. I show that each stationary

equilibrium is associated with an information basis. Then I calculate equilibria in

several examples. Finally, I show how criteria that eliminate non-nescient equilibria in

the two-period model do not apply to the infinite case.

3.1 Full Information Equilibria

A standard linear asset pricing model4 is characterized by three equations:

pt = xt + βE[pt+1|Ωt] (3)

xt =
∞∑
j=0

Xjεt−j (4)

Ωt = {Ωt−1, εt, pt} (5)

4This asset pricing model can represent a variety of settings. pt may be the price of an equity

after a dividend xt is announced but before it is paid, with risk-neutral traders. pt may be the utility-

denominated price of an asset paying utility dividend xt as in Lucas (1978). pt may be the equilibrium

price of an asset with stochastic supply xt where agents have CARA preferences, which is common in

the finance literature, and appears in settings with learning from endogenous information sets, such

as Singleton (1987) and Nimark (2017). Or the asset pricing equation may be the linearized form of

a more complicated model.
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Equation (3) is the asset pricing equation, whereby the price pt of an asset is determined

by a stochastic dividend xt, and the discounted expectation of the next period’s price,

conditional on the information set Ωt and with discount factor β ∈ (0, 1). Equation

(4) gives the time series process for the dividend xt as a moving average of white noise

shocks εt ∼ N(0, 1). The coefficients {Xj}∞j=0 determine the time series properties of

xt.

The full information assumption manifests as equation (5), which describes how the

information set Ωt evolves. At time t, agents observe the current fundamental shock

εt, the current asset price pt, as well as everything they knew in the previous period

Ωt−1. Thus their information set is the entire history of εt’s and pt’s. Crucially, εt is

exogenous, but pt is endogenous.

Formally, an equilibrium of this asset pricing model is given by Definition 2:

Definition 2 A full information equilibrium of the asset pricing model is a

sequence of prices pt, dividends xt, and information sets Ωt, given a sequence of shocks

εt such that for all t:

1. Prices satisfy the asset pricing equation (3)

2. The dividend evolves by equation (4)

3. The information set evolves by equation (5)

Furthermore, the equilibrium is called stationary if the price pt and dividend xt pro-

cesses have a time-invariant autocovariance function.

This is a standard setting. How can there be many full information equilibria? The

multiplicity arises from the joint determination of endogenous prices and the informa-

tion set. For any information set Ωt, the equilibrium price is uniquely determined as

the discounted sum of future dividends:

pt = E

[
∞∑
j=0

βjxt+j|Ωt

]
(6)

However, the information set also depends on the price, by the full information as-

sumption (5). So the price pt appears on both sides of the equilibrium equation (6):

pt = E

[
∞∑
j=0

βjxt+j|{Ωt−1, εt, pt}

]
(7)
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The pricing equation is self-referential! Without conditioning on Ωt, the equilibrium

price may no longer be determined. Of course, perhaps (7) has a unique fixed point

for pt? Theorem 1 says no: there are many equilibrium prices that satisfy (7), except

under specific conditions.

Before demonstrating the multiplicity, it is necessary to introduce notation for two

special equilibria. The first special equilibrium is the nescient equilibrium, which is the

familiar equilibrium that economists typically select when assuming full information:

Definition 3 A full information equilibrium is called the nescient equilibrium if the

equilibrium information set is the nescient information set ΩN
t , given by:

ΩN
t = {εt−j}∞j=0 (8)

The nescient equilibrium is the case where prices reveal no information about future

shocks, so expectations depend only on the history of fundamental shocks. Applying

equation (6), the nescient price is given by

pNt = E

[
∞∑
j=0

βjxt+j|ΩN
t

]
(9)

= E

[
∞∑
j=0

∞∑
k=0

βjXkεt+j−k|ΩN
t

]
=
∞∑
j=0

∞∑
k=j

βjXkεt+j−k

The second special equilibrium is perfect foresight:

Definition 4 A full information equilibrium is called the perfect foresight equilib-

rium if the equilibrium information set is the perfect foresight information set ΩPF
t ,

given by:

ΩPF
t = {εt−j}∞j=−∞ (10)

The perfect foresight equilibrium is the case where agents know the values of all future

and past shocks. Applying equation (6), the perfect foresight price is given by

pPFt = E

[
∞∑
j=0

βjxt+j|ΩPF
t

]
(11)

=
∞∑
j=0

βjxt+j
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If the nescient and perfect foresight prices differ, then it is possible for the asset

price to contain some news about future dividends. Agents then use that news to

price the asset. News from prices begets news from prices. Theorem 1 formalizes the

possibility of this self-fulfilling news.

Theorem 1 If pNt 6= pPFt for some t, then there exist multiple stationary full informa-

tion equilibria of the linear asset pricing model

Proof : Appendix A.1

The intuition for the proof is that the price contains everything in an information set

that is relevant for pricing an asset, so if agents see prices generated by any information

set, they will price the asset as if they possessed the entire information set. The perfect

foresight price pPFt does exactly this, and is always a valid equilibrium by assumption,

so there must be multiplicity. Of course, agents trading in this equilibrium do not

literally have perfect foresight – observing pPFt does not tell them the future path of

shocks – rather, they observe a time series of prices that forecasts discounted future

dividends better than they could have using past shocks alone.

3.2 Information Bases

Stationary equilibria are entirely characterized by an information basis, which I study

in this section.

3.2.1 Notation for Stationary Equilibria

When describing stationary equilibria, it is convenient to use lag operator notation.

For example, equation (4) implies that the dividend time series xt is characterized by

the lag operator polynomial X(L) =
∑∞

j=0XjL
j:

xt = X(L)εt

The summation starts at zero because xt is a causal process. I will write similar

polynomials for other time series. However, other lag operator polynomials may be

non-causal. Additionally, for some process W (L) =
∑∞

j=−∞WjL
j, let W ∗(L) denote

the adjoint of the polynomial:

W ∗(L) =
∞∑

j=−∞

W ′
−jL

j

which is just W (L) with the coefficients reversed and transposed.
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3.2.2 Information Basis Definition and Properties

A stationary equilibrium is characterized by its information basis. The information

basis is a white noise process wt that captures all of the new information acquired by

agents at time t. It is called a basis because all equilibrium time series can be expressed

as a linear combination of wt’s. In the simple asset pricing model, wt is the white noise

component of the Wold representation of the equilibrium price process. Definition 5

gives the properties of a valid information basis.

Definition 5 A process wt is an information basis for a stationary equilibrium

price process pt if:

1. εt is causally spanned by wt, i.e. there exists a lag operator polynomial U(L) such

that εt =
∑∞

j=0 UjL
jwt

2. wt is a process of innovations for the Wold representation of P (L), i.e. for

pt = P (L)wt, P (L) is both causal and causally invertible, while wt is unit white

noise so that

cov(wt, wt−j) =

1 j = 0

0 j 6= 0

Why must a valid information basis have the properties in Definition 5? First,

agents know the entire history of current and past shocks, so the current shock εt must

be recoverable from current and past information innovations wt. Next, the only way

agents can learn information beyond that contained in fundamental shocks is from

current and past prices, so the basis must be a causal linear combination of prices

and their Wold innovations. Finally, there are many ways to write a time series basis

that is causal in the Wold innovations of the price process, and the Wold innovations

themselves are a convenient choice. Given that the information basis causally spans

both shocks and prices, the information set (5) can be reduced to the infinite history

of the wt’s:

Ωt = {wt−j}∞j=0 (12)

This form of the Wold representation is nonstandard. In practice, economists of-

ten normalize the process of Wold innovations so that they represent forecast errors.

However, other normalizations are valid too; in this case I normalize the innovations

to have unit variance. This improves notation in many cases, because their associated
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Blaschke factors are simpler, and because a unit variance innovation is a unitary trans-

formation of the fundamental shock space.5 This is a consequence of Theorem 2, which

says that the polynomial W (L) characterizing a basis must be anti-causal and unitary,

i.e. causally invertible by its adjoint:

Theorem 2 Any information basis wt is given by wt = W (L)εt with causal inverse

W−1(L) = W ∗(L)

Proof : Appendix A.2

The equilibrium price process is uniquely determined from the information basis,

by Theorem 3. Some notation is needed first. Let the lag operator polynomial P (L)

denotes the process for the price in terms of the information basis, so that pt = P (L)wt.

And let W (L) denote the process for the information basis in terms of the fundamental

shocks, so that wt = W (L)εt. The inverse of W (L) is its adjoint, so shocks can be

written as εt = W ∗(L)wt. Theorem 2 implies that W ∗(L) is strictly causal. Lastly, let

[·]+ denote the annihilation operator, which annihilates strictly negative powers of L.

Theorem 3 For any information basis wt that spans the fundamental shocks by εt =

W ∗(L)wt, the equilibrium price process is given by pt = P (L)wt, where:

P (L) = [(I − βL−1)−1X(L)W ∗(L)]+ (13)

Proof : Appendix A.3.

The polynomial for the information basis W (L) determines everything about a

particular equilibrium. What might W (L) look like?

The space of potential information basis polynomials W (L) is restricted by the

requirements that it be unit white noise and that its adjoint W ∗(L) is causal. A large

class of candidates is the set of non-causal Blaschke products,6 so that the basis is

given by

W (L) =
K∏
k=1

Bk (14)

5This property holds in the asset pricing setting where prices and shocks are scalar-valued. Infor-

mation bases become more complicated when there is more than one shock or endogenous variable,

as in Section 6.
6Few other candidates exist. The coefficients of W (L) represent the Taylor coefficients of an

analytic inner function, which must be a product of Blaschke factors and singular inner functions,

which are not explored in this paper. Such products need not have finite order.
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where

Bk = (φk − L−1)(1− φkL−1)−1 |φk| < 1

In this case, W (L) is called a non-causal Blaschke product of order K. Still, even

first order Blaschke products are general enough to contain many interesting cases;

Theorem 4 gives three examples.

Theorem 4 A first order Blaschke information basis given by

wt = (φ− L−1)(I − φL−1)−1εt

for |φ| < 1 contains three special cases:

1. When φ = 1 the equilibrium price pt is the nescient equilibrium

2. When φ = 0 the equilibrium price pt is the equilibrium for one-period-ahead news

3. When φ = β the equilibrium price pt is the perfect foresight equilibrium

Proof : Appendix A.4

A first-order Blaschke information basis can produce a variety of equilibria by vary-

ing a single parameter, the Blaschke root φ. The nescient and one-period-ahead news

cases feature information bases of wt = εt and wt = εt+1 respectively. But these famil-

iar cases bookend a variety of intermediate bases that vary continuously with φ. Most

surprising, φ = β yields the perfect foresight equilibrium; the corresponding informa-

tion basis is the one that is exactly disentangled by the forward-looking price setting

equation (11).

3.3 Example: AR(1) Dividend

I have established that the asset pricing model may exhibit many equilibria, depending

on the information basis. What do these equilibria look like? This section explores the

multiplicity with a simple example.

Suppose that the dividend is AR(1) with autocorrelation ρ ∈ (0, 1):

xt = ρxt−1 + εt (15)

The lag operator polynomial associated with this dividend is

X(L) =
∞∑
j=0

ρjLj
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I solve for the equilibria associated with a range of information bases. In each case,

the information basis wt = W (L)εt is given by a single non-causal Blaschke factor:

W (L) = (φ− L−1)(1− φL−1)−1 (16)

which means that the information process can be written recursively by

wt = φwt+1 + φεt − εt+1

I calculate the equilibria for 20 values of φ, equally spaced on [0, 1]. Per Theorem

4, these equilibria are bookended by the nescient case (φ = 1) and one-period-ahead

news (φ = 0). These Blaschke factors satisfy most information basis properties from

Definition 5 by construction; I numerically confirm that the implied P (L) is the Wold

representation of the price for all calculated equilibria.7

Figure 1 plots the impulse response functions (IRFs) associated with the different

equilibria, with the two special cases highlighted for φ = 1 and φ = 0. In the inter-

mediate cases, the color gradient indicates the position of the parameter φ on the unit

interval. Lines of the same shade across panels correspond to the same information

basis.

Panels (a) and (b) present causal IRFs, because they show responses to a unit

innovation in the information wt. Panel (a) plots the IRFs for the dividend xt; these

IRFs are given by the polynomial coefficients of X(L)W ∗(L). The IRFs associated

with different φ’s become negative because changing φ from 0 to 1 flips the sign on

the shock, i.e. in the nescient case wt = εt but in the one-period-ahead news case

wt = −εt+1. But even though the IRFs change depending on φ, they all generate the

exact same process for xt, and all have the exact same autocovariance functions. Panel

(b) plots the IRFs for prices, generated by the polynomials from Theorem 3. In effect,

these are just the nescient asset prices for the corresponding dividends given in Panel

(a). Thus when dividends have negative IRFs, the prices have negative IRFs. And

when φ starts to decrease from 1, this transition occurs quickly but smoothly.

In contrast, Panels (c) and (d) present non-causal IRFs, because they show re-

sponses to a unit fundamental shock εt. Panel (c) plots the IRFs for the information

7This property may not hold in general, i.e. for some models, conjecturing an information basis

may imply a process for prices with a Wold representation whose innovations form a new basis. This

will be the case in the business cycle model in Section 6.2, at which point I discuss how to numerically

confirm this property.
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bases, which are given by the polynomial W (L). These are just plots of Blaschke fac-

tors, which spike at 0 and −1. In the special cases, only these values are non-zero, but

over the smooth transition from nescient to one-period-ahead news, the information

basis contains a linear combination of many future shocks. There are no nonzero val-

ues to the right of the origin because an information innovation wt must be orthogonal

to past shocks. Panel (d) plots the response of prices to fundamental shocks. These

IRFs are both causal (because dividends are affected by past shocks) and non-causal

(because current information contains news about future shocks.) The IRFs are given

by the polynomial P (L)W (L), which is the convolution of the IRFs in Panel (c) with

their pairs in Panel (b). In the nescient case, the price is unaffected by future shocks,

while in the one-period-ahead news case, the price is only affected by the next period’s

shock.

(a) Dividend IRF: Information Basis (b) Price IRF: Information Basis

(c) Information IRF: Shock Basis (d) Price IRF: Shock Basis

Figure 1: Multiple Equilibria in the AR(1) Example

Asset price volatility depends on the information basis. This is because giving

agents news about future shocks necessarily increases the variance of their forecasts of
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future dividends. Figure 1 makes this sensitivity to the information basis clear: the

price variance is the sum of the squares of the IRF points in Panel (d). The asset price

has the lowest variance in the nescient equilibrium, and higher variance one agent’s have

one-period-ahead news. But intermediate cases increase the variance substantially, and

achieve the upper bound on price volatility in the perfect foresight case when φ = β.

Are non-causal IRFs problematic? Certainly not from an applied perspective; em-

pirical researchers regularly estimate non-causal IRFs to find the effects of news about

future fundamentals on current prices or other endogenous variables. Indeed, the esti-

mated non-causal components are sometimes large (e.g. Beaudry and Portier (2006),

Gazzani (2020), or especially Chahrour and Jurado (2021)).

Still, non-causality is one property that theorists might be tempted to axiomatically

assume away in order to pin down equilibrium. This would be unwise; time series that

appear non-causal in the data may have an underlying causal representation. Section 5

demonstrates that multiplicity can occur even when the information bases are entirely

causal.

3.4 Imperfect Observation of the Price

Does the multiplicity exist when agents cannot perfectly observe the asset price? In

this section I relax perfect observation in two ways: delayed observation and noisy

observation. In the two-period model, either of these assumptions eliminates the non-

nescient equilibrium. This is not so when time is infinite.

3.4.1 Delayed Observation of the Price

In this section, I assume that agents do not observe the contemporaneous price when

forming their expectations. For example, this occurs when the price of an asset is

determined by a sealed-bid auction.

In the two-period model of Section 2, this assumption eliminates all non-nescient

equilibria. When prices are observed, the information set was Ω1 = p1. But without

observing prices, Ω1 = ∅. Thus the equilibrium price with delayed observation was

given by p1 = E[x2] = 0, the nescient equilibrium.

But delayed observation does not eliminate non-nescient equilibria when time is

infinite. The law of motion for the information set is now:

Ωt = {Ωt−1, εt, pt−1} (17)
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so that agents only observe price pt−1 in period t. The remaining model assumptions

are unchanged, so that equilibrium sequences must satisfy equations (3), (4), and (17).

Under this assumption, the multiplicity persists. This is because for any equilibrium

sequence of prices pPOt for the model with perfect observation (i.e. satisfying Definition

2), observing εt and pPOt−1 reveals pPOt . Theorem 5 formalizes this result.

Theorem 5 If the price process pPOt = P (L)wt is an equilibrium price for the model

with perfect observation, with information basis wt = W (L)εt, then it is also an equi-

librium price for the delayed observation model.

Proof : Appendix A.5

The proof relies on the properties of information bases: they are invertible by their

adjoint (Theorem 2), which is strictly causal. Therefore, past observations of the basis

and the current fundamental shock jointly reveal the current basis. Thus the current

price is inferable, even if it is not directly observed.

3.4.2 Noisy Observation of the Price

In this section, I assume that agents do not observe the equilibrium price directly.

Instead, they observe a noisy signal st of the price:

st = pt + νt (18)

where νt is exogenous white noise with νt ⊥ xt+j for all j.

In the two-period model (Section 2) noisy observation eliminates the non-nescient

equilibrium. Under this assumption, the information set is Ω1 = s1, and the equilibrium

price is given by

p1 = E[x2|s1] =
cov(x2, s1)

var(s1)
s1 =

cov(x2, p1)

var(p1) + var(ν1)
(p1 + ν1)

whose only solution is p1 = 0 (the nescient equilibrium) if var(ν1) > 0.

But when time is infinite, multiplicity prevails. The law of motion for the informa-

tion set is now:

Ωt = {Ωt−1, εt, st} (19)

so that agents forecast conditional on the current shock εt and the noisy signal st,

rather than the price itself. Prices pt are still formed by rational expectations per

equation (3).
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Any equilibrium price of the model with perfect observation pPOt is also an equilib-

rium of the model with noisy observation. This is because while the noisy signal does

not reveal the price alone, it is able to do so when combined with the history of signals

and dividends. Theorem 6 proves this result.

Theorem 6 If the price process pPOt = P (L)wt is an equilibrium price for the model

with perfect observation, with information basis wt = W (L)εt, then it is also an equi-

librium price for the noisy observation model.

Proof : Appendix A.6

Theorem 6 looks similar to Theorem 5 but the proof takes an entirely different

strategy: I conjecture that wt and νt form a two-dimensional information basis, show

that the basis can be recovered from observed signals, and then show that the perfect

observation price pPOt is also the price implied by the conjectured information basis.

4 Axiomatic Nescience?

There is a multiplicity of equilibria, and rejecting perfect foresight is not enough to

guarantee uniqueness. Is it feasible to axiomatically select the nescient equilibrium,

eliminating self-fulfilling news and returning to uniqueness? In this section, I argue

that it is not.

A continuum of equilibria in the baseline model can be rationalized as nescient

equilibria of a model with a finite history, by choosing an appropriate initial condition.

Thus a nescience axiom does not uniquely select an equilibrium. This is true even in

the long run, where nescient equilibria feature a continuum of possible autocovariance

functions. The same self-referential information feedback that generates self-fulfilling

news in the infinite history model generates self-perpetuating dependence on initial

conditions in the finite history model.

4.1 Finite History Model

I now modify the asset pricing model from Section 3 so that time no longer runs in-

finitely into the past. Instead, agents are endowed with a signal about future dividends

as an initial condition of the model. Equilibrium prices, dividends, and information are

determined as before, satisfying equations (3), (4), and (5), except time begins with

t = 1.
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However, a discrete beginning for time breaks the recursive structure of the infor-

mation set evolution equation (5), so an initial condition is required. Therefore, the

initial information set is given by Ω0, which may contain information about future div-

idends. To clarify the structure of Ω0, consider it as being determined by an exogenous

signal process st that contains news about future shocks. Agents only receive a signal

in the initial period, but it is useful to write it more generally, defined by

st = S(L−1)L−1εt (20)

where S(L) is some causal lag operator polynomial, so that S(L−1) reveals information

about future shocks L−1εt. This general structure allows for simple one-period-ahead

news (S(L) = 1) but also recursive structures so that agents learn about the next

period’s dividend but also future news signals.

An equilibrium of this finite history asset pricing model is given by Definition 6:

Definition 6 A full information equilibrium of the finite history asset pric-

ing model is a sequence of prices pt, dividends xt, and information sets Ωt, given a

sequence of shocks εt and initial condition Ω0 such that for all t ≥ 1:

1. Prices satisfy the asset pricing equation (3)

2. The dividend evolves by equation (4)

3. The information set evolves by equation (5)

Demonstrating equivalence between nescient and non-nescient equilibria in the finite

and infinite history models is most straightforward when considering AR(1) processes

for the initial signal s0:

st = φst+1 + εt+1 (21)

with |φ| < 1. Even though this is a restrictive assumption on the form of possible

signals, it is sufficiently flexible to produce a large set of equilibria.8 Theorem 7 for-

malizes this: any equilibrium associated with a first-order Blaschke information basis

(i.e. the examples studied in Section 3.2) can be rationalized as a nescient equilibrium

of the finite history model, by assuming a suitable AR(1) process for the initial signal.

8In principle, further equilibria are possible if the signal process is allowed to be more general than

an AR(1) process, but this generality needlessly complicates the proof of Theorem 7.
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Theorem 7 If wt = W (L)εt is the information basis of an infinite history asset pricing

model with equilibrium price process pt, and W (L) is a first-order Blaschke product,

then pt is also the nescient equilibrium price process of some finite history asset pricing

model for t ≥ 1.

Proof : Appendix A.7

Any infinite history asset pricing model has a continuum of equilibria associated

with first-order Blaschke information bases. These equilibria are non-nescient. Theo-

rem 7 says that each of these non-nescient equilibria are exactly equivalent for t ≥ 1 to

the nescient equilibrium of the finite history model, given some initial condition. The

strategy for the proof is to first show that the Wold innovations to the AR(1) signal

process (21) are a first-order Blaschke information basis. Then I show that observing

the current shock and prior period’s signal reveals the current signal. Finally, I prove

that the nescient price conditional on observing the signal process is exactly the price

of a non-nescient equilibrium with the same information basis.

4.2 Nescience Discussion

Axiomatically choosing the nescient equilibrium is not a feasible way to resolve the

multiplicity. The multiplicity of equilibria calculated in Section 3.3’s examples can all

be recast as nescient equilibria of a finite history model. Nescience is not enough to

select unique equilibria.

What if this argument is unconvincing and all non-nescient equilibria are discarded

anyway? This would just transform the problem of multiplicity into a problem of de-

pendence on initial conditions. The news in the initial information set self-perpetuates;

its influence never dissipates. When solving the neoclassical growth model or station-

ary DSGE models, the initial condition is rarely a concern; while initial conditions

matter for equilibrium, they matter less and less as time passes. This is not so for

the informational initial condition. The initial information set determines the long run

autocovariance function of the economy.

What is the benefit of considering this issue as multiplicity versus initial condition

dependence? The infinite history model is more tractable than the finite history model.

Finding multiple equilibria is as simple as conjecturing non-causal Blaschke products

and testing if they form valid information bases. Whereas in the finite history model,

it is more challenging to construct the appropriate initial condition. This was straight-
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forward in the proof of Theorem 7, where the possible set of information bases was

restricted to first-order Blaschke products, which are consistent with AR(1) processes

for the initial signal. Higher order information bases require constructing more compli-

cated initial signals when the history is finite. So the infinite history model is convenient

because it requires no further work to characterize an equilibrium beyond finding the

information basis.

The infinite history was not a necessary assumption to generate the multiple equi-

libria. Is the infinite future? For example, the recursive news signal st defined by

equation (21) is a discounted sum of all future shocks. But this assumption can be re-

laxed too. Instead of telescoping forever into the future, equation (21) can recursively

determine the signal up to some final stochastic sT . Nor is it problematic that the

information basis is the linear combination of all future shocks; Lemma 1 shows that

an information basis can be rewritten in terms of current and past news signals st.

Finally, the nescient equilibrium need not be a special equilibrium that justifies

axiomatic selection. In Section 3.3’s example, the nescient equilibrium was special be-

cause it was a lower bound on news. But in some models, there may exist a continuum

of equilibria with even less information about the future than the nescient equilibrium.

For example, if agents are limited to observing dividends xt and prices pt, these series

need not causally reveal the fundamental shocks εt in all equilibria. Indeed, this is one

of the mechanisms by which fundamentally causal models can produce equilibria that

feature apparent non-causality. The next section explores such possibilities.

5 Mechanisms for Non-causality

How restrictive is the assumption of causality? Does it make sense for current choices

to depend on future shocks? Yes, if future economic shocks are not truly unknowable;

such shocks are nonfundamental.9 This section provides several plausible examples of

white noise shocks that can be predicted by other strictly causal time series. In these

examples, the asset price is such a time series, and the predictability arises endogenously

as self-fulfilling news.

9Nonfundamentalness is a well known challenge to recovering economic shocks from reduced form

analysis (Hansen and Sargent, 1991). Early examples of models featuring nonfundamentalness include

Hansen and Sargent (1980), Futia (1981), Quah (1990), and Lippi and Reichlin (1993).
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5.1 Non-invertible Shocks

In this section, I present a full information asset pricing model which features multiple

causal equilibria. The key assumption is that the fundamental shocks εt are generated

by some underlying unknowable superfundamental shock ϕt, such that equilibrium

prices may still be causal despite containing news about future εt’s.
10 And Theorem 8

proves that any non-causal equilibrium studied in Section 3.3 can be represented as a

causal equilibrium in terms of some superfundamental.

Definition 7 A white noise shock process εt is said to be determined by a superfun-

damental shock process ϕt if

1. ϕt is a shock process, i.e. ϕt is white noise with finite variance

2. εt is causally spanned by ϕt, i.e. there exists a causal polynomial Z(L) such that

εt = Z(L)ϕt

3. The polynomial Z(L) is not causally invertible.

What is a superfundamental? Any underlying process that causally determines fu-

ture news, but cannot be recovered from contemporaneous data. For example, agents

may anticipate future productivity improvements, but those future “shocks” may be

determined by current changes in technological R&D. The R&D would be the su-

perfundamental process that cannot be recovered from observing contemporaneous

productivity.

Crucially, any non-causal equilibrium is observationally equivalent to a causal equi-

librium where the news is determined by some superfundamental shock process:

Theorem 8 If pt = P (L)wt is a stationary equilibrium process with information basis

wt = W (L)εt, and the price contains some news so that pt 6= pNt , then the pt process

10Using the VAR literature’s language, the shocks εt may be considered nonfundamental, and ϕt the

true fundamental. However, I avoid this language because most studies of nonfundamentalness assume

that the fundamental shocks enter the information sets of agents in the model (Beaudry and Portier,

2014). Therefore, I continue to label εt the “fundamental” shock, because the “superfundamental” ϕt

is never explicitly revealed to agents. This mechanism is closely related to the “confounding dynamics”

studied by Rondina and Walker (2021). In their business cycle model, information frictions prevent

agents from exactly learning the causal shock process, even though the model features as many shocks

as signals.
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is one of multiple stationary equilibria causally determined by some superfundamental

shock process ϕt.

Proof : Appendix A.8

The intuition of the proof is that given any information basis wt = W (L)εt, it is

possible to causally write the shock in terms of some superfundamental by choosing

Z(L) = W ∗(L).

To illustrate, consider the following example which features multiple equilibria that

are causally determined by the superfundamental. The process for the observable

fundamental shock is given by a second-order Blaschke product:

Z(L) = B1(L)B2(L)

where B1(L) and B2(L) are causal Blaschke factors:

B1(L) = (θ1 − L)(1− θ1L)−1 B2(L) = (θ2 − L)(1− θ2L)−1

The adjoints of any combination of these causal Blaschke factors form valid information

bases. The four cases are:

WN(L) = I W 1(L) = B∗1(L) W 2(L) = B∗2(L) W 3(L) = B∗1(L)B∗2(L)

The first valid cast is the nescient equilibrium: wNt = WN(L)εt = εt. The other three

are combinations of Blaschke adjoints. These information bases effectively “root-flip”

one or both of the Blaschke factors that make up Z(L). Higher order Blaschke products

would admit even more causal equilibria: one for every combination of Blaschke factors.

Figure 2 presents a numerical example, plotting the four causal equilibria. The

dividend xt is AR(1) and the parameter values are unchanged from Section 3.3. The

roots for the Blaschke factors are θ1 = 0.5 and θ2 = 0.9. In both panels, the IRFs are

with respect to a unit superfundamental shock. Panel (a) gives the four information

bases, each of which is causal. The nescient equilibrium reveals the least about the

superfundamental, so WN is the convolution of W 1 and W 2 and has the smallest weight

on the contemporaneous shock. W 3 fully reveals the superfundamental, so it only has

weight on the contemporaneous shock. Panel (b) plots the IRFs of the prices in terms

of the superfundamental. The nescient price has exactly the same autocovariance

function as in Figure 1, despite looking dissimilar. The other prices all contain news

about future dividends, so their IRFs have larger sums of squares than the nescient
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(a) Information IRF: Superfundamental Basis (b) Price IRF: Superfundamental Basis

Figure 2: Impulse Response Functions in the AR(1) Example

IRF, implying higher price volatilities. The highest variance price is for the W 3 basis,

which reveals the most information about the superfundamental.

This example of self-fulfilling causal news demonstrates that any non-causal equi-

librium can be recast as a causal equilibrium in terms of some superfundamental. It is

one way that an observed white noise shock can be determined by past processes. This

may result in multiplicity, because those past processes can be revealed as self-fulfilling

news by equilibrium prices.

5.2 Non-causality Discussion

When exogenous variables are non-invertible, fundamentally causal models can appear

to be non-causal, and feature multiple equilibria. Moreover, this non-invertibility can

appear in many more ways than a simple scalar time series with explosive roots. For

example, if dividends are determined by multiple superfundamental shocks, then the

dividend process is non-invertible and the asset pricing model has multiple equilib-

ria (Appendix B.1). Or, if agents receive some exogenous news about future shocks,

and the news signal has a recursive structure, then again the model features multiple

equilibria (Appendix B.2).

The non-invertible example also suggests an alternative interpretation to the main

finding. Instead of accepting non-causality and concluding that FIRE models gener-

ally feature multiple equilibria, economists can draw a weaker conclusion: if agents

only have common information, where they observe prices and dividends, but not the
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fundamental shocks driving the dividends, then if dividends are determined by some

non-invertible process, the asset market has multiple equilibria.

Non-invertibility examples demonstrate that relaxing the restrictive causality as-

sumption is realistic. Theorem 1 ensures that when this assumption is relaxed, the

general asset pricing model has multiple solutions. Does this conclusion about mul-

tiplicity carry over to more sophisticated macroeconomic settings? The next section

answers this question.

6 Macroeconomic Models

This section considers DSGE models in general, which can feature multiplicity. I show

how each equilibrium is characterized by an information basis, as in Section 3.2. As an

example, I study the canonical RBC model, for which I calculate many full information

equilibria.

6.1 A General DSGE Model

Consider a general linear dynamic stochastic macroeconomic model of the following

form. Yt is a n × 1 vector of endogenous variables, and Xt is a vector of exogenous

variables. The equilibrium conditions of the model are represented as a single matrix

equation:

0 = E[BX0Xt +BX1Xt+1 +BY 0Yt +BY 1Yt+1|Ωt] (22)

with some implicit constraints that any state variables in Yt are predetermined at time

t. The exogenous variables are causally determined by fundamental white noise shocks

εt:

Xt = X(L)εt (23)

Agents have full information, so their information set Ωt evolves by:

Ωt = {Ωt−1, εt, Yt} (24)

These three equations characterize equilibrium:

Definition 8 A full information equilibrium of the macroeconomic model

is a sequence of endogenous vectors Yt, exogenous vectors Xt, and information sets Ωt,

given a sequence of shocks εt such that for all t:
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1. Endogenous vectors satisfy the matrix equation (22)

2. The exogenous vector evolves by equation (23)

3. The information set evolves by equation (24)

Standard solution methods solve this general DSGE model by conjecturing that the

endogenous variables Yt are a function of current and past variables. Expressed in terms

of fundamental shocks, this conjecture implies that Yt = Y (L)εt, with the lag operator

polynomial Y (L) causal. Standard methods solve for the nescient equilibrium.

But conjecturing that choices are a function of causal variables assumes away other

possible equilibria! People make choices as a function of their information, which

includes causal shocks, but potentially news as well. In the full information model, Yt

enters the information set, so if Yt contains news about future shocks, agents will make

choices based on that news, which can allow the news to appear in Yt. As in the asset-

pricing model, news begets news, because macroeconomic variables are forward-looking

even when there are no asset prices.

Theorem 9 formalizes the existence of multiple equilibria in the general macroe-

conomic model. Let Y N
t and Y PF

t denote the equilibrium time series corresponding

to nescient information ΩN
t and perfect foresight ΩPF

t , respectively (equations (8) and

(10)). The proof strategy follows exactly the approach used for Theorem 1.

Theorem 9 If Y N
t 6= Y PF

t for some t, then there exist multiple stationary full infor-

mation equilibria of the general DSGE model

Proof : Appendix A.9

Stationary equilibria are characterized by an information basis, as in Section 3.2.

For the macroeconomic model, the information basis Wt is defined:

Definition 9 A process Wt is an information basis for an equilibrium macroeco-

nomic process Xt if:

1. εt is causally spanned by Wt, i.e. there exists a lag operator polynomial U(L)

such that εt =
∑∞

j=0 UjL
jWt

2. Wt is the process of innovations for the Wold representation of X(L), i.e. for

Xt = X(L)Wt, X(L) is both causal and causally invertible, while Wt is unit white

noise so that

cov(Wt,Wt−j) =

I j = 0

0 j 6= 0
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The main difference between this definition and that of the asset pricing model is that

the information basis for a macroeconomic model may be vector-valued.11

In a stationary equilibrium, endogenous variables are lag operator polynomials of

the information basis:

Yt = Y (L)Wt

with Y (L) causal. If Wt = εt, then Yt is the nescient equilibrium Y N
t , which is found

by standard methods. Otherwise Adams (2021a) proves how to linearly solve for the

equilibrium polynomial Y (L) given an information basis Wt. If the Blanchard-Kahn

conditions are satisfied, then the equilibrium process is

Y (L)Wt = −Θ(L)
[
Ξ(L)

[
B−1X1

(
BZ1L

−1 +BZ0

)
X(L)W ∗(L)

]
+

]
+
Wt

where Θ(L) and Ξ(L) are known polynomials that depend on the matrix coefficients in

equation 22. Crucially, this solution holds for any arbitrary information basis Wt, so Yt

will be an equilibrium process so long as Wt satisfies all of the properties of Definition

9. As the next example demonstrates, there may be many such bases.

6.2 Real Business Cycle Example

In this example, I study multiplicity in a simple RBC model resembling that of Kydland

and Prescott (1982).

The linearized model features five equilibrium conditions and as many endogenous

variables.The production function gives output yt in terms of capital kt, labor lt, and

exogenous productivity at:

yt = at + αkt + (1− α)lt

The resource constraint requires that all output is used for consumption ct and invest-

ment it:

Y yt = Cct + Iit

11This complicates some findings; in particular I have no general analog to Theorem 4, because

the proof relied on lag operator polynomials commuting, which need only be true when they are

scalar-valued. Even in the multivariate case, the Wold decomposition still applies, and the non-

causal basis polynomial W (L) represents some analytic multivariate inner function that is a product

of noncommuting multivariate Blaschkes products and singular inner functions (Jury, Martin, and

Shamovich, 2021).
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where Y , C, and I are the steady-state values of output, consumption, and investment

respectively. Capital is a state variable, with law of motion

kt+1 = δit + (1− δ)kt

where δ is the depreciation factor. The forward-looking Euler equation for a consumer

with log utility is

0 = βE[ct − ct+1 +R(yt+1 − kt+1)|Ωt]

where R is the steady state gross return on capital. The first order condition for labor

supply is

yt = ct +
1 + η

η
lt

where η is the Frisch elasticity. These five equations make up the matrix equation (22).

Finally, I assume that productivity is AR(1) in terms of the fundamental shock εt:

at = ρat−1 + εt

Parameter Interpretation Value

β Discount factor 0.99

η Frisch labor supply elasticity 0.5

α Capital share 0.33

δ Depreciation factor 0.02

ρ Productivity autocorrelation 0.95

Table 1: Quarterly Calibration

There is only one shock, so the information basis Wt = W (L)εt is scalar-valued in

this example. Many possible information bases exist; I calculate equilibria of informa-

tion bases that are first-order Blaschke factors (equation (16)) selecting 20 values of

φ, equally spaced on [0, 1]. The model’s calibrated parameters are otherwise standard,

listed in Table 1.

Figure 3 presents the causal IRFs for how four macroeconomic quantities respond

to a unit innovation in the information wt. Panel (a) plots the IRFs for productivity,

which become negative as φ → 0, because one-period-ahead news is the negative of

the future shock, i.e. wt = −εt+1. Panel (b) plots consumption; as usual, in the

one-period-ahead news case, consumption jumps by less on impact because agents
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(a) Productivity (b) Consumption

(c) Capital (d) Output

Figure 3: Multiple Equilibria in the RBC Model: IRFs expressed in the Information

Bases

are able to improve their consumption smoothing with the addition of news about

the future. Panel (c) plots capital, which by assumption cannot jump in response to

contemporaneous information. After news is realized, it rises for one period as agents

consume out of their capital stock in order to afford their smoothed consumption in

advance of future productivity improvements. Panel (d) plots output, which follows

the paths of productivity and capital, plus a small amplification that is due to the

labor supply response.

Figure 4 the plots the non-causal IRFs for the same quantities in terms of the fun-

damental shocks. Panel (a) demonstrates that for any information basis, the shock has

exactly the same effect on productivity. Consumption in Panel (b) is forward-looking,

so it can respond to news and thus non-causal shocks. Unlike the smooth IRFs in

Figure 3, there are jumps in the consumption responses to fundamental shocks. This

is because agents cannot distinguish between different future shocks for intermediate
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(a) Productivity (b) Consumption

(c) Capital (d) Output

Figure 4: Multiple Equilibria in the RBC Model: IRFs expressed in the Shock Basis

values of φ; they can only smooth consumption with respect to their information basis.

Capital in Panel (c) now can have a nonzero response to contemporaneous shocks,

because they are wrapped up in the news that affected investment in the past. Thus

even though the contribution of productivity to the output IRFs in Panel (d) is en-

tirely causal, output is non-causal because capital and labor depend on forward-looking

choices.

In the asset pricing model, the additional equilibria increased price volatility rel-

ative to the nescient equilibrium; this is not the case for the business cycle model.

Figure 5 Panel (a) plots the variance of different time series with respect to the root

φ that parameterizes the information basis. Productivity cannot be affected by the

information basis. For all other time series, the highest volatility is in the nescient

equilibrium (φ = 1). As is standard, the variance of consumption and other time series

is lower when agents receive one-period-ahead news (φ = 0) because they are able

to improve their consumption smoothing. However, the intermediate cases give even
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(a) Volatility (b) Noninvertibility Measure

Figure 5: Sensitivity to the Basis Parameter in the RBC Model

greater attenuation, with the lowest variances for φ close to the upper bound. This

contrasts with the result in the asset pricing model, where the highest variance was

a for φ = β. This is because in both cases, a large φ implies that the basis contains

much information about shocks far into the future. The news increased volatility in

the asset pricing model by improving forecasting of future dividends, but this decreases

volatility in the RBC model by improving consumption smoothing.

Many equilibria exist for the full information RBC model! However unlike the asset

pricing model, not all of the considered information bases were valid. This is because

when a time series is a function of a basis, that time series may not be invertible

to recover the basis. For example, consumption is given by ct = C(L)Wt, but C(L)

may not be causally invertible, in which case Wt would not correspond to the white

noise of the Wold representation of ct, and would not be a valid information basis. To

determine whether Wt is a valid basis for the endogenous time series Yt = Y (L)Wt, I

check if Y (L) is causally invertible, which is the case for φ ≤ 0.85 and φ = 1.

For non-invertible processes, it is possible to calculate how far the process is from

being invertible by taking the Wold decomposition of Y (L) = Z(L)U(L), where Z(L)

is causally invertible and U(L) is unit white noise. U(L) is causal and when Z(L) is

causally invertible, the initial coefficient U0 is one while all other terms are zero. For

each φ, I calculate U0, and let 1− U2
0 denote the “noninvertibility measure”. Figure 5

Panel (b) plots this measure for each φ as the “Joint Time Series”, which is non-zero for

φ ∈ (0.85, 1). Additionally, I calculate the measure for some individual time series to
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show how they contribute to invertibility. Consumption appears to be most important;

it is invertible whenever the entire vector is. Capital and output are never invertible

except for the nescient equilibrium, perhaps because capital is predetermined, and

output is driven mostly by capital and productivity, neither of which are invertible

when φ < 1.

7 Conclusions and Possible Solutions

Dynamic stochastic FIRE models can feature many equilibria. What should macroe-

conomists do about it?

One possibility is equilibrium selection. Perhaps there exist defensible axioms that

will select a single equilibrium from the continuum of possibilities. It is not clear

that the nescient equilibrium - which most of the literature currently selects - is the

correct choice given the empirical evidence for the presence of news (Beaudry and

Portier, 2014). Additionally, the causal news example in Section 5.1 demonstrates

that the nescient equilibrium is not even special as an extreme or limiting case, or

by axiomatically discarding non-causal equilibria, because there is also multiplicity as

information about past shocks gets removed.

Given the empirical literature, it is tempting to use data to pin down a model; each

equilibrium is uniquely (up to scale) associated with an information basis, which can

be estimated from the relevant time series. This could be a viable resolution. However,

this approach would require first ruling out spontaneous news, as there is no reason yet

to rule out having temporary deviations from an information basis, or even to switch

entirely from one stationary equilibrium to another.

Another possibility is to embrace the multiplicity. Certainly there are many clear

examples of multiple equilibria in macroeconomics, such as bank runs (Diamond and

Dybvig, 1983) or currency crises (Obstfeld, 1996). But should we conclude that business

cycles in general feature spontaneous shifts from one information process to another?

Perhaps this approach could help explain patterns of nonfundamental volatility.

A feasible solution is to relax full information or rational expectations. Incomplete

information and bounded rationality can break the feedback from actions to forecasts

to actions that creates the multiplicity. The incomplete information literature is par-

ticularly suited to address the exact problems raised in this paper, because incomplete

information theories jointly determine economic actions and information sets in equilib-
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rium. Sometimes this is done by assuming strictly exogenous processes for information,

such as in Woodford (2003), Lorenzoni (2009), or Angeletos and La’O (2013). But it

is increasingly common to allow learning from endogenous information, as in Graham

and Wright (2010), Melosi (2016), or Adams (2021b). Sometimes such learning does

not eliminate the FIRE multiplicity, although it may reduce it to a small finite num-

ber of equilibria (Chahrour and Gaballo, 2020) or to locally unique equilibria (Adams,

2021a). In other cases, the multiplicity is erased entirely; Lucas (1972) featured a

unique equilibrium.

32



References

Adams, J. J. (2021a): “Macroeconomic Models with Incomplete Information and Endoge-

nous Signals,” Discussion Paper 001004, University of Florida, Department of Economics,

Publication Title: Working Papers.

(2021b): “Moderating Macroeconomic Bubbles Under Dispersed Information,” Uni-

versity of Florida mimeo.

Angeletos, G.-M., and J. La’O (2013): “Sentiments,” Econometrica, 81(2), 739–779.

Beaudry, P., and B. Lucke (2010): “Letting Different Views about Business Cycles

Compete,” NBER Macroeconomics Annual, 24, 413–456, Publisher: The University of

Chicago Press.

Beaudry, P., and F. Portier (2006): “Stock Prices, News, and Economic Fluctuations,”

American Economic Review, 96(4), 1293–1307.

(2014): “News-Driven Business Cycles: Insights and Challenges,” Journal of Eco-

nomic Literature, 52(4), 993–1074.

Benhabib, J., P. Wang, and Y. Wen (2015): “Sentiments and Aggregate Demand Fluc-

tuations,” Econometrica, 83(2), 549–585.

Blanchard, O. J., and C. M. Kahn (1980): “The Solution of Linear Difference Models

under Rational Expectations,” Econometrica, 48(5), 1305–1311.

Chahrour, R., and G. Gaballo (2020): “Learning from House Prices: Amplification and

Business Fluctuations,” The Review of Economic Studies.

Chahrour, R., and K. Jurado (2021): “Recoverability and Expectations-Driven Fluctu-

ations,” The Review of Economic Studies, p. rdab010.

Cochrane, J. H. (1994): “Permanent and Transitory Components of GNP and Stock

Prices,” The Quarterly Journal of Economics, 109(1), 241–265.

Diamond, D. W., and P. H. Dybvig (1983): “Bank Runs, Deposit Insurance, and Liq-

uidity,” Journal of Political Economy, 91(3), 401–419.

Forni, M., L. Gambetti, M. Lippi, and L. Sala (2017): “Noisy News in Business

Cycles,” American Economic Journal: Macroeconomics, 9(4), 122–152.

33



Futia, C. A. (1981): “Rational expectations in stationary linear models,” Econometrica,

49(1), 171–192.

Gaballo, G. (2018): “Price Dispersion, Private Uncertainty, and Endogenous Nominal

Rigidities,” The Review of Economic Studies, 85(2), 1070–1110.

Gazzani, A. (2020): “News and noise bubbles in the housing market,” Review of Economic

Dynamics, 36, 46–72.

Graham, L., and S. Wright (2010): “Information, heterogeneity and market incomplete-

ness,” Journal of Monetary Economics, 57(2), 164–174.

Hansen, L. P., and T. J. Sargent (1980): “Formulating and estimating dynamic linear

rational expectations models,” Journal of Economic Dynamics and Control, 2, 7–46.

Hansen, L. P., and T. J. Sargent (1991): “Two Difficulties in Interpreting Vector Au-

toregressions,” in Rational Expectations Econometrics, ed. by L. P. Hansen, and T. J.

Sargent. Westview Press, Boulder.

Jury, M. T., R. T. W. Martin, and E. Shamovich (2021): “Blaschke–singular–outer

factorization of free non-commutative functions,” Advances in Mathematics, 384, 107720.

Kydland, F. E., and E. C. Prescott (1982): “Time to Build and Aggregate Fluctua-

tions,” Econometrica, 50(6), 1345–1370.

Lanne, M., and P. Saikkonen (2013): “Noncausal Vector Autoregression,” Econometric

Theory, 29(3), 447–481, Publisher: Cambridge University Press.

Lippi, M., and L. Reichlin (1993): “The Dynamic Effects of Aggregate Demand and Sup-

ply Disturbances: Comment,” The American Economic Review, 83(3), 644–652, Publisher:

American Economic Association.

(1994): “VAR analysis, nonfundamental representations, blaschke matrices,” Jour-

nal of Econometrics, 63(1), 307–325.

Lorenzoni, G. (2009): “A Theory of Demand Shocks,” American Economic Review, 99(5),

2050–2084.

Lucas, R. E. (1972): “Expectations and the Neutrality of Money,” Journal of economic

theory, 4(2), 103–124.

34



Lucas, R. E. (1978): “Asset Prices in an Exchange Economy,” Econometrica, 46(6), 1429–

1445.

Melosi, L. (2016): “Signaling Effects of Monetary Policy,” The Review of Economic Studies.

Mertens, K., and M. O. Ravn (2010): “Measuring the Impact of Fiscal Policy in the Face

of Anticipation: A Structural VAR Approach,” The Economic Journal, 120(544), 393–413.

Morris, S., and H. S. Shin (1998): “Unique Equilibrium in a Model of Self-Fulfilling

Currency Attacks,” The American Economic Review, 88(3), 587–597.

Nimark, K. (2017): “Dynamic Higher Order Expectations,” Working Paper.

Obstfeld, M. (1996): “Models of currency crises with self-fulfilling features,” European

Economic Review, 40(3), 1037–1047.

Prescott, E. C., and R. Mehra (1980): “Recursive Competitive Equilibrium: The Case

of Homogeneous Households,” Econometrica, 48(6), 1365–1379.

Quah, D. (1990): “Permanent and Transitory Movements in Labor Income: An Explanation

for ”Excess Smoothness” in Consumption,” Journal of Political Economy, 98(3), 449–475,

Publisher: The University of Chicago Press.

Rondina, G., and T. B. Walker (2021): “Confounding Dynamics,” Journal of Economic

Theory, 196, 105251.

Singleton, K. J. (1987): “Asset prices in a time-series model with disparately informed,

competitive traders,” .

Stokey, N. L., R. E. Lucas, and E. C. Prescott (1989): Recursive methods in economic

dynamics. Harvard University Press.

Woodford, M. (2003): “The Imperfect Common Knowledge and the Effects of Mone-

tary Policy,” in Knowledge, Information and Expectations in Modern Macroeconomics: In

Honor of Edmund S. Phelps, ed. by P. Aghion, R. Frydman, J. Stiglitz, and M. Woodford.

35



A Proofs

A.1 Theorem 1

Proof of Theorem 1. It suffices to find any valid alternative to the nescient

equilibrium.

Let Ω̃t ⊃ ΩN
t denote any information set containing the nescient information set

that induces a stationary forecast satisfying

E

[
∞∑
j=0

βjxt+j|ΩN
t

]
6= E

[
∞∑
j=0

βjxt+j|Ω̃t

]
(25)

with associated stationary price p̃t = E[
∑∞

j=0 β
jxt+j|Ω̃t].

The implied information set is

Ωt = {ΩN
t−1, εt, p̃t}

p̃t is the best forecasts of
∑∞

j=0 β
jxt+j conditional on Ω̃t, so it must also be the best

forecast conditional on Ωt, which adds no additional information. Therefore pt = p̃t.

The assumption that p̃t 6= pNt implies that Ωt 6= ΩN
t and pt 6= pNt . The time series Ωt

and pt make up a valid equilibrium, but so do ΩN
t and pNt .

Finally, it remains to show that such a Ω̃t exists. One candidate is the perfect

foresight information set ΩPF
t . By assumption pNt 6= pPFt , so ΩPF

t must satisfy condition

(25).

A.2 Theorem 2

Proof of Theorem 2. First I prove that wt = W (L)εt can be written as a polynomial

in current and future εt alone, i.e. W (L) is anti-causal so that coefficients on lag

operators satisfy Wj = 0 for all j ≥ 1.

Definition 5 requires that wt causally spans the shock process by εt = U(L)wt for

some U(L), so the covariance must also be given by

cov(wt, L
jεt) = cov(wt, L

jU(L)wt)

= cov(wt,
∞∑

k=−∞

UkL
k+jwt) = cov(wt, U−jwt)

= U−j = 0 ∀j > 0
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where the last equality holds because U(L) must be causal. Thus Wj = 0 for all j > 0.

To see that W (L) is invertible by its adjoint, consider the polynomial given by

V (L) = W ∗(L)W (L)

Each coefficient is

Vj =
∞∑

k=−∞

W ∗
−kWk+j =

∞∑
k=−∞

WkWk+j

= cov(W (L)εt, L
jW (L)εt)

= cov(wt, wt−j) =

0 j 6= 0

1 j = 0

where the last equality follows from the white noise property of wt. This implies that

V (L) is the identity.

A.3 Theorem 3

Proof of Theorem 3. The pricing equation is

pt = xt + βE[pt+1|Ωt]

which when written with lag operator polynomials becomes

P (L)wt = X(L)εt + βE[P (L)wt+1|Ωt]

The information set Ωt is the history of the information basis, i.e. Ωt = {wt−j}∞j=0.

Therefore E[wt+1|Ωt] = 0 which implies the forecast is given by

E[P (L)wt+1|Ωt] = E[
∞∑
j=0

PjL
jwt+1|Ωt]

=
∞∑
j=1

PjL
jwt+1 = [P (L)L−1]+wt

using the annihilation operator. Plugging this forecast back into the pricing equation:

P (L)wt = X(L)εt + β[P (L)L−1]+wt

Use the relationship εt = W ∗(L)wt:

P (L)wt = X(L)W ∗(L)wt + β[P (L)L−1]+wt
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Collecting coefficients on wt gives a relationship for the polynomials:

P (L) = X(L)W ∗(L) + β[P (L)L−1]+

Substituting recursively yields

P (L) = X(L)W ∗(L) + [βL−1X(L)W ∗(L) + β2L−2X(L)W ∗(L) + ...]+

= [(I − βL−1)−1X(L)W ∗(L)]+

A.4 Theorem 4

Proof of Theorem 4. When φ = 1, (1− φL−1) is not invertible, so the limit must

be taken. The limiting information basis is

lim
φ→1

wt = lim
φ→1

(φ− L−1)(1− φL−1)−1εt

= lim
φ→1

(φ− L−1)(1 + φL−1 + φ2L−2 + ...)εt

= lim
φ→1

(φ+ (φ2 − 1)L−1 + (φ2 − 1)φL−2 + (φ2 − 1)φ2L−3 + ...)εt

= εt

and the information set becomes

[φ = 1] : Ωt = {wt−j}∞j=0 = {εt−j}∞j=0

which is the nescient information set ΩN
t .

When φ = 0, the information basis becomes

[φ = 0] : wt = −L−1εt = εt+1

and the information set becomes

[φ = 0] : Ωt = {wt−j}∞j=0 = {εt+1−j}∞j=0

which says that agents at time t receive perfect news about the one-period-ahead shock.

When φ = β, the information basis becomes

[φ = β] : wt = (β − L−1)(1− βL−1)−1εt
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Plug this basis into the solution (Theorem 3) with U = (1− βL−1)(β − L−1)−1 to get

the price process Pβ(L):

Pβ(L) = [(1− βL−1)−1X(L)(1− βL−1)(β − L−1)−1]+

= [X(L)(β − L−1)−1]+ = X(L)(β − L−1)−1

because (β−L−1)−1 = (βL−1)−1L which is strictly causal, so the annihilation operator

can be dropped. Multiply by (1− βL−1)−1(1− βL−1) to get

= (1− βL−1)−1X(L)(1− βL−1)(β − L−1)−1 = (1− βL−1)−1X(L)U(L)

then multiply both sides by U−1(L)εt to get

Pβ(L)U−1(L)εt = (1− βL−1)−1X(L)εt

The left-hand side is simply Pβ(L)wt. Expand the right-hand side to recover the perfect

foresight price (equation (11)):

Pβ(L)wt = (1− βL−1)−1xt =
∞∑
j=0

βjxt+j = pPFt

A.5 Theorem 5

Proof of Theorem 5. The process for the information basis wt is invertible by its

adjoint W ∗(L), so the fundamental shocks can be written in terms of the basis by

εt = W ∗(L)wt =
∞∑
j=0

W−jwt−j

which implies that the contemporaneous innovation wt can be expressed in terms of

the contemporaneous shock and past innovations by

wt = εt −
∞∑
j=1

W−jwt−j (26)

Iterating equation (17) backwards, the information set Ωt is given by

Ωt = {εt−j}∞j=0 ∪ {pPOt−j}∞j=1
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But both εt−j = W ∗(L)wt−j and pPOt−j = P (L)−1wt−j are causally spanned by the

information basis, so the information set is equivalently given by

Ωt = εt ∪ {wt−j}∞j=1

so equation (26) implies that wt ∈ Ωt. Therefore the information set Ωt is equivalent

to the information set {wt−j}∞j=0 of the perfect-observation model.

A.6 Theorem 6

Proof of Theorem 6. Let w̃t =

(
wt

νt

)
denote the two-dimensional information

basis with lag operator polynomial W̃ (L) =

(
W (L) 0

0 1

)
determined by

w̃t = W̃ (L)

(
εt

νt

)

By construction, the information basis w̃t causally spans the fundamental shock εt,

the noise shock νt, and the price pPOt . Therefore it also spans the signal st corresponding

to the price sequence pPOt per equation (18), and thus the information set Ωt per

equation (19). Crucially, the entire vector w̃t is causally invertible from the information

set because W (L) is causally invertible by W ∗(L) (Theorem 2):(
εt

st

)
=

(
εt

pt + νt

)
=

(
W ∗(L) 0

P (L) 1

)
w̃t

=⇒ w̃t =

(
W ∗(L) 0

P (L) 1

)−1(
εt

st

)
The equilibrium price given by equation (7) is

pt = E

[
∞∑
j=0

βjxt+j|Ωt

]
= E

[
∞∑
j=0

βjxt+j|{w̃t−j}∞j=0

]

= E

[
∞∑
j=0

βjxt+j|{wt−j}∞j=0 ∪ {νt−j}∞j=0

]
= E

[
∞∑
j=0

βjxt+j|{wt−j}∞j=0

]
= pPOt

where the last step follows from νt being orthogonal to wt and xt at all lags.
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A.7 Theorem 7

Lemma 1 reveals how the causal Wold representation of the signal is related to the

polynomial S(L) defined by equation (20). I write the signal’s Wold representation as

st = As(L)W s(L)εt with causally invertible As(L) and white noise innovation wst =

W s(L)εt.

Lemma 1 If S(L) is a causally invertible rational polynomial, then the recursive news

signal st has Wold representation st = As(L)W s(L)εt with causally invertible As(L)

given by

As(L) = S(L) (27)

and unitary W s(L) given by

W s(L) = L−1S(L)−1S(L−1) (28)

Proof of Lemma 1. It is straightforward to show that st = As(L)W s(L)εt:

st = S(L−1)L−1εt

= S(L)S(L)−1S(L−1)L−1εt = As(L)W s(L)εt

and As(L) = S(L) is causally invertible by assumption, so it remains to show that

W s(L)εt is white noise.

S(L) is both causal and causally invertible, so S(L−1) can be written as

S(L−1) =

∏K
k=1(1− θkL−1)∏J
j=1(1− ρjL−1)

with J and K finite by assumption, and all roots θk and poles ρj inside the unit circle.

Therefore W s(L) can be written as

W s(L) = L−1S(L)−1S(L−1) = L−1
∏J

j=1(1− ρjL)∏K
k=1(1− θkL)

∏K
k=1(1− θkL−1)∏J
j=1(1− ρjL−1)

Multiply the numerator and denominator of the non-causal polynomial by powers of

L:

= L−1
∏J

j=1(1− ρjL)∏K
k=1(1− θkL)

LJ−K
∏K

k=1(L− θk)∏J
j=1(L− ρj)

= LJ−K−1
∏K

k=1(L− θk)∏K
k=1(1− θkL)

∏J
j=1(1− ρjL)∏J
j=1(L− ρj)
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which is a non-causal Blaschke product, so W s(L)εt is white noise.

The most challenging step in proving Theorem 7 is constructing an initial condition

that rationalizes a given information basis. Lemma 2 proves how to do so.

Lemma 2 If the initial information set is given by Ω0 = s0 for an AR(1) signal process

st following

st = φst+1 + εt+1

then the nescient equilibrium of the finite history asset pricing model has equilibrium

price process pt = P (L)εt for t ≥ 1 where P (L) satisfies the pricing equation (13) with

information basis W (L) = W S(L).

Proof of Lemma 2. Observing st−1 and εt reveals st:

st =
1

φ
(st−1 − εt)

and observing st and st−1 reveals wst by

wst = st − φst−1

because Lemma 1 implies that (1−φL)−1W s
t is the Wold representation for st. There-

fore, if st−1 and εt are in the information set Ωt, then so are st and wst .

s0 and ε1 are in Ω1, thus s1 and ws1 are as well. So by induction, Ωt contains all

st−j for 0 ≤ j ≤ t. wst causally spans all st−j and εt−j for j ≥ 0, so wst is a basis for the

information set Ωt.

Agents price using equation (6), which written in terms of shocks is:

pt = E

[
∞∑
j=0

βjxt+j|Ωt

]

=
∞∑
j=0

∞∑
k=0

βjXkE [εt+j−k|Ωt]

The information set can be written Ωt = {s0, wS1 , ...wSt }. To derive the expectation

of future shocks conditional on this information set, first consider the expectation

conditional on the infinite history information set Ω̃t = {wSt−j}∞j=0:

E[εt+k|Ω̃t] = [L−kW S∗(L)]+w
S
t
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=

εt+k k ≤ 0∑∞
j=0W

S
k+jw

s
t−j k > 0

By Lemma 1, W S(L) is given by

W S = L−1S(L)−1S(L−1) = L−1
1− φL

1− φL−1

= − φ− L−1

1− φL−1

W S(L) is first order Blaschke with parameter φ, so for k > 0

[L−kW S∗(L)]+]wSt = −[L−k(
φ− L−1

1− φL−1
)∗]+w

S
t = −[L−k

φ− L
1− φL

]+w
S
t

= [L−k+1 1

1− φL
− L−k φ

1− φL
]+w

S
t =

φk−1

1− φL
wSt −

φk+1

1− φL
wSt

= φk−1(1− φ2)
1

1− φL
wSt = φk−1(1− φ2)AS(L)wSt

= φk−1(1− φ2)st

The expected value of future shocks conditional on the infinite history information

set Ω̃t can be written in terms of the current signal st, which is in the finite history

information set Ωt. Therefore, expectations of shocks are the same between the two

information sets:

E[εt+k|Ω̃t] = E[εt+k|Ωt]

and so expectations of future dividends and hence prices are the same between the two

information sets:

pt = E

[
∞∑
j=0

βjxt+j|Ωt

]
= E

[
∞∑
j=0

βjxt+j|Ω̃t

]

Theorem 3 says that the pricing polynomial P (L) for the infinite history information

set is given by P (L) = [(I − βL−1)−1X(L)W S∗(L)]+, therefore the equilibrium price

for the finite history model is

pt = P (L)wSt t ≥ 1
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Proof of Theorem 7. For any valid information basis, the infinite history asset

pricing model has an equilibrium price process given by

pt = P (L)wt

where P (L) is given by Theorem 3. Let φ denote the pole of the non-causal first-order

Blaschke factor W (L), and let st denote the signal process generated by equation (20)

with S(L−1) = (1− φL−1)−1. If the initial condition of a finite history model is given

by Ω0 = s0, then Lemma 2 implies that the nescient equilibrium price p̃t of the finite

history model satisfies

p̃t = pt ∀t ≥ 1

A.8 Theorem 8

Proof of Theorem 8. First I show that there exists a superfundamental process ϕt

such that pt is causal.

pt = P (L)wt = P (L)W (L)εt

Let εt = Z(L)ϕt where Z(L) is the causal polynomial to be found:

= P (L)W (L)Z(L)ϕt

Many valid Z(L) exist such that pt is causal. A simple choice is the adjoin of the

information basis. W ∗(L) is causal per Definition 5, and inverts W (L) per Theorem 2,

so choosing Z(L) = W ∗(L) gives:

pt = P (L)W (L)W ∗(L)ϕt = P (L)ϕt

By Theorem 3 P (L) is causal, therefore pt is causally determined by the superfunda-

mental ϕt.

It remains to show that multiple causal equilibria exist for this choice of ϕt. Consider

the nescient equilibrium given by pNt = PN(L)εt. Substitute for the shock:

pNt = PN(L)Z(L)ϕt

= PN(L)W ∗(L)ϕt

PN(L) and W ∗(L) are both causal so their product is causal.
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A.9 Theorem 9

Proof of Theorem 9. It suffices to find any valid alternative to the nescient

equilibrium.

Rearrange the equilibrium condition (22) as an expression for Yt:

Yt = E[−B−1Y 0BY 1Yt+1 −B−1Y 0BX0Xt −B−1Y 0BX1Xt+1|Ωt]

Substitute for future values Yt+1, Yt+2 and so forth to express Yt in terms of expectations

of exogenous vectors:

Yt = −E[
∞∑
j=0

(−B−1Y 0BY 1)
j
(
B−1Y 0BX0Xt+j +B−1Y 0BX1Xt+1+j

)
|Ωt]

Let Ω̃t ⊃ ΩN
t denote any information set containing the nescient information set

that induces a stationary forecast satisfying

E

[
∞∑
j=0

(−B−1Y 0BY 1)
j
(
B−1Y 0BX0Xt+j +B−1Y 0BX1Xt+1+j

)
|ΩN

t

]

6= E

[
∞∑
j=0

(−B−1Y 0BY 1)
j
(
B−1Y 0BX0Xt+j +B−1Y 0BX1Xt+1+j

)
|Ω̃t

]
(29)

with associated stationary vector Ỹt = −E
[∑∞

j=0(−B
−1
Y 0BY 1)

j
(
B−1Y 0BX0Xt+j +B−1Y 0BX1Xt+1+j

)
|Ω̃t

]
.

The implied information set is

Ωt = {ΩN
t−1, εt, Ỹt}

Ỹt is the best forecasts of
∑∞

j=0(−B
−1
Y 0BY 1)

j
(
B−1Y 0BX0Xt+j +B−1Y 0BX1Xt+1+j

)
condi-

tional on Ω̃t, so it must also be the best forecast conditional on Ωt, which adds no

additional information. Therefore Yt = Ỹt. The assumption that Ỹt 6= Y N
t implies that

Ωt 6= ΩN
t and Yt 6= Y N

t . The time series Ωt and Yt make up a valid equilibrium, but so

do ΩN
t and Y N

t .

Finally, it remains to show that such a Ω̃t exists. One candidate is the perfect fore-

sight information set ΩPF
t . By assumption Y N

t 6= Y PF
t , so ΩPF

t must satisfy condition

(29).
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B Online Appendix: Additional Mechanisms for

Non-Causality

This appendix includes additional examples with apparent non-causality in causal mod-

els, and the associated multiplicity of equilibria.

B.1 Shock Complexity

In this example, the dividend process is determined by multiple underlying stochastic

processes. Dividend shocks remain white noise, but the shock is not fundamentally

unpredictable. The underlying processes are not exogenously revealed to agents, but

prices may endogenously contain information about them, manifesting as news about

future dividends. Such news is self-fulfilling, allowing for multiple equilibria.

Dividends xt are now determined by two independent stochastic processes xut and

xvt :

xt = xut + xvt

where xut = Xu(L)ut and xvt = Xv(L)vt are each determined by independent stochastic

“superfundamental” shocks ut and vt. In the following numerical example, I assume

that both processes are AR(1):

xut = ρuxut−1 + ut xvt = ρvxvt−1 + vt (30)

What are these superfundamental shocks? Dividends are determined by a large variety

of forces (e.g. demand for different goods in different markets, competitors’ actions

along different dimensions, behavior of many employees, etc.) that cannot possibly be

fully captured by the few data dimensions that traders observe. For this complexity to

hide relevant information, there must be more linearly independent superfundamentals

than observables: in this simple example, agents observe a single dividend series driven

by two independent processes.

The shock εt still determines the dividend by xt = X(L)εt, which is now the Wold

representation, with εt the Wold innovation that is determined by a linear combination

of current and past superfundamental shocks. Figure 6 Panel (a) plots this linear

combination for the case where ρu = 0.9 and ρv = 0.1. The solid orange line is the

IRF of εt to the superfundamental ut, while the dashed blue line is the IRF to the

superfundamental vt. The shock εt is white noise, but is determined by both current
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and past values of ut and vt because the two processes in equation (30) have different

autocorrelations.

Agents in the model observe the dividends xt and shocks εt, but not the underlying

superfundamentals ut and vt which cannot be inferred by observing xt alone. If they

could observe the superfundamentals, agents could forecast future values of the shock

εt. Figure 6 Panel (a) makes this clear: εt is white noise, but is correlated with past

values of ut and vt.

(a) εt Shock IRF to Each Superfundamental (b) Price IRF to εt Shock

Figure 6: Multiple Equilibria with Shock Complexity

There are at least two causal equilibria to this model. One is the nescient equi-

librium, in which prices contain no information beyond current and past values of the

shock εt. As usual, the nescient price pNt is given by equation (9). The second is an

equilibrium with self-fulfilling news: prices contain information about future shocks

by revealing the current values of the superfundamentals ut and vt. This “news equi-

librium” price pnet now depends independently on each superfundamental, which by

equation (6) gives:

pnet = E

[
∞∑
j=0

βjxt+j|Ωt

]
= E

[
∞∑
j=0

βjxut+j|{ut−j}∞j=0

]
+ E

[
∞∑
j=0

βjxvt+j|{vt−j}∞j=0

]

This price is strictly causal in terms of the superfundamentals, but non-causal when

expressed in terms of shocks.

Figure 6 Panel (b) contrasts these two equilibria by plotting the impulse response

of prices to εt. In the nescient equilibrium, the price depends only on current and past
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shocks. But in the equilibrium with news, the price is correlated with future shocks,

because the price contains information about the superfundamentals not contained in

εt. The responses of prices to current and past shocks are the same, which is why the

IRFs overlap in the causal region. This is because any additional information revealed

by prices in the news equilibrium is uncorrelated with information contained in the

past history of white noise shocks.

B.2 Exogenous News

In this example, agents receive exogenous news about future shocks, in addition to

any endogenous self-fulfilling news. The news process is correlated with future shocks,

which are not fundamentally unpredictable, and contains the standard one-period-

ahead news as a special case. This example demonstrates two valuable conclusions:

FIRE models with exogenous news processes can still feature multiple equilibria, and

exogenous news can contain hidden information about future shocks that is revealed

in equilibrium.

I introduce exogenous news by modifying the information set evolution equation

(5) to:

Ωt = {Ωt−1, εt, pt, νt} (31)

where νt is the exogenous news process, some time series that is correlated with future

fundamental shocks. The other equilibrium conditions (3) and (4) are unchanged from

the baseline model in Section 3.1.

The presence of exogenous news constrains the set of possible information bases.

A valid information basis must now causally span the shocks εt, the price process pt,

and the news νt. Still, many possible equilibria may exist. To demonstrate, I consider

again the AR(1) example, where dividends are given by equation (15). Additionally,

I let νt = ν(L)εt be white noise, with associated lag operator polynomial ν(L) that

is a non-causal first order Blaschke product with parameter ψ. As a result, the news

νt causally spans the fundamental shocks εt (i.e. this news process would be a valid

information basis for the example without exogenous news).

This exogenous news process has a recursive structure:

νt = ψεt − εt+1 + ψνt+1

Agents observe the current shock εt, so current news νt is a signal about the next shock

εt+1 and future news νt+1. These two components cannot be distinguished from one
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another, except in the ψ = 0 special case where news perfectly reveals the next period’s

shock. When ψ ∈ (0, 1), the news is correlated with all future shocks.

A candidate information basis is given by

W (L) = ν(L)B(L)

where B(L) is some non-causal Blaschke product. This information basis is the analog

to equation (16) in Section 3.3. It is white noise, causally spanning νt and by extension

εt. If wt is also the Wold innovation for pt in equilibrium, then it is a valid information

basis (Definition 5).

(a) Dividend IRF: Information Basis (b) Price IRF: Information Basis

(c) Information IRF: Shock Basis (d) Price IRF: Shock Basis

Figure 7: Multiple Equilibria with Exogenous News

I calculate multiple equilibria where B(L) is a first order Blaschke product with

parameter φ taking twenty values on the unit interval, while ρ = 0.9 as in Section 3.3

and ψ = 0.9. The equilibria are presented in Figure 7, which is the analog to Figure 1.

Two special cases are highlighted. φ = 1 corresponds to the nescient equilibrium, which

in this case includes current and past shocks, in addition to current and past news νt.
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When φ = 0, agents receive news nt+1 one period early, which I label “Advance News”.

This is analogous to the case in Section 15, where φ = 0 implied that agents observed

the fundamental shock one period early.

Panel (a) of Figure 7 presents the impulse response functions of dividends to an

innovation in the information basis wt. While the IRFs look dissimilar, they all corre-

spond to exactly the same dividend process in terms of fundamental shocks. Panel (b)

gives the IRFs of asset prices to wt, which as usual is determined by Theorem 3.

Panel (c) of Figure 7 presents the IRFs of the information bases wt to a fundamental

shock εt, i.e. exactly the coefficients in the polynomial W (L). The basis corresponding

to the nescient equilibrium is now the non-causal Blaschke factor ν(L), which gives the

news process νt in terms of the fundamental shocks. Every other information basis is

the product of ν(L) with another non-causal Blaschke factor, creating a second order

Blaschke product. As information bases become more complicated, the equilibrium

price does as well: Panel (d) presents the IRFs of the asset price to the shock εt. The

nescient case resembles one of the intermediate cases from Figure 1, while “Advance

News” looks similar except shifted one period into the future. The remaining IRFs map

out a continuous transformation between the two extremes, which sometimes contain

much more news than the exogenous process, and thus place considerable weight on

future shocks.

C Online Appendix: Decentralized Nonlinear Mod-

els

The linear models considered so far are approximations of nonlinear models. Does

the multiplicity found in the linear models also feature in the nonlinear ones? Yes it

can. In this section I examine stochastic dynamic programming problems and argue

that regularity assumptions which might ordinarily ensure uniqueness fail to do so in

decentralized economies.

A general stochastic dynamic programming problem is expressed with a Bellman

equation given by

V (x, s) = max
u

r(x, s, u) + β

∫
s′∈S

V (g(x, s, u), s′)dλ(s′|s) (32)

with control vector u, an endogenous state vector x that is governed by the law of

motion g(x, u), and produces return function r(x, u). The stochastic exogenous state
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vector is drawn from the set S, with probability distribution λ(s′|s) which is conditional

on the current exogenous state vector s. Under one of several possible sets of regularity

conditions12 the solution to this dynamic programming problem is a unique policy

function u = h(x, s).

Regularity conditions can ensure a unique policy function for an individual facing

exogenous processes: Robinson Crusoe faces no multiplicity when pricing his papaya

trees (Lucas, 1978). But the same conditions may not give uniqueness in a decen-

tralized economy, where individuals treat endogenous aggregates as exogenous random

variables.

To see why, consider the decentralized dynamic programming problem considered

by Prescott and Mehra (1980), in their original study of recursive competitive equilibria

with many homogeneous agents. Again, let x denote an agent’s endogenous state, but

let z denote an exogenous stochastic state that affects all agents. In such a problem,

agents take others’ states as given, so from any agent’s perspective, the exogenous

state is the vector s = {x, z}, where x is the vector of other agents’ endogenous states.

f(x, z) = x′ is the endogenous evolution rule for the average state x. Prescott and

Mehra write (albeit with different notation and less generality) an individual’s dynamic

programming problem as

V (x, {x, z}) = max
u

r(x, z, u) + β

∫
z′∈Z

V (g(x, z, u), {f(x, z), z′})dλ(z′|z) (33)

which, under regularity conditions, admits a unique policy function u = h(x, {x, z}).
Agents are homogeneous, so when symmetry is imposed, this gives the symmetric

policy function u = h(x, {x, z}). A Recursive Competitive Equilibrium is characterized

by a policy function and evolution rule consistent with one another, satisfying

f(x, z) = g(x, z, h(x, {x, z}))

To show that their recursive competitive equilibrium is unique, Prescott and Mehra

point out that the Welfare Theorems hold given their assumption that neither r(x, z, u)

nor g(x, z, u) depend on x. Thus it suffices to solve the social planner’s problem with

symmetric Pareto weights:

W (x, z) = max
u

r(x, z, u) + β

∫
z′∈Z

W (g(x, z, u), z′)dλ(z′|z) (34)

12See Stokey, Lucas, and Prescott (1989) for examples of such regularity conditions.
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with the solution being the policy function u = m(x, z). The solution to the social

planner’s problem is unique under the same regularity assumptions that ensure the

individual’s problem (33) is unique, and moreover the social planner’s policy function

is exactly the symmetric policy function:

m(x, z) = h(x, {x, z})

By construction, the solution m(x, z) is consistent with the law of motion for the

aggregate state f(x, z), so Prescott and Mehra conclude that there exists a unique

recursive competitive equilibrium.

Except, writing the individual’s dynamic programming problem as equation (33)

does not immediately follow from the structure of the problem. Doing so implicitly

assumes the nescient equilibrium! First, generalize the agent’s exogenous state to be

s = {~x, z}, where ~x is a (possibly infinite) vector of current and past states.13 Correctly

applying the individual’s exogenous state s to the generic Bellman equation (32) yields:

V (x, {~x, z}) = max
u

r(x, z, u) + β

∫
{~x′,z′}∈S

V (g(x, z, u}, u), {~x′, z′})dF ({~x′, z′}|{~x, z})

(35)

where F ({~x′, z′}|{~x, z}) is a conditional probability distribution.

Therein lies the problem. The probability distribution F ({~x′, z′}|{~x, z}) is endoge-

nous; it depends on the dynamics of ~x, which are determined in equilibrium. Prescott

and Mehra’s formulation presumes that agents have the nescient information set, be-

cause they forecast with the exogenous probability distribution λ(z′|z). Their argument

for uniqueness depends on the fact that the social planner’s problem (equation 34) has

exactly the same conditional probability distribution as their decentralized problem

(equation 33). But it may not. The nescient solution that solves the social planner’s

problem is one valid equilibrium, but there can be more.

The stationary equilibria calculated in Section 3.3 serve as examples. The Bellman

equation is just the asset pricing equation (3), with no endogenous controls or states.

The exogenous state vector is the history of prices and shocks, {pt−j, εt−j}∞j=0 = Ωt. The

return function is the current dividend xt. And the conditional probability distribution

F ({~x′, z′}|{~x, z}) is determined by the information basis wt and the equilibrium price

process given by Theorem 3.

13Considering the state s = {x, z} presumes that x is first order Markov, which need not be true.

For example, the nescient equilibrium of the AR(1) asset pricing model in Section 3.3 was first order

Markov, but equilibria for other bases were not.
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