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Motivation

� Macroeconomics with fixed costs of adjustment depends on the distribution

of agents in the inaction region

� Requires solving a PDE: the Kolmogorov Forward Equation (KFE)

� Analytical solutions are useful for tractability and understanding (e.g.

Alvarez-Lippi sufficient statistics)

� ... but in general, analytical solution is hard because the PDE is

endogenous: evolution depends on the flow of resets

� Existing methods require shortcuts (e.g. symmetry, small shocks)
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This Paper’s Contributions

� Derive an analytical solution to a general fixed cost model

� Key insight: in the frequency domain, you can solve for the endogenous

reset frequency without first finding the entire distribution

� Reset frequency is like magic! All aggregate IRFs are linear functions of the

reset frequency alone: entire distribution is not needed!

� Application: canonical menu cost model. Analytical solution reveals

nonlinearities:

� Size-dependence: large enough shocks can even reverse effect of a monetary

shock

� State-dependence: shocks to steady state are not general

� Trend inflation is easy to handle, not simply ”second-order”
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The Generic Fixed Cost Model

� Applied in many settings:

� Sticky prices, investment, inventories, rational inattention, hiring and firing,

wage negotiation, etc.

� Example: dynamic money demand (link)

� State variable x follows a diffusion in continuous time

� Fixed costs imply an inaction region x ∈ [a < 0 < b]

� Outside the inaction region, pay a fixed cost and reset to x = 0

� Macroeconomic outcomes depend on the distribution h(x , t)
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What Characterizes the Distribution h(x , t)?

1. h(x , t) satisfies the Kolmogorov Forward Equation on interval [a, 0) ∪ (0, b]:

∂th(x , t) = γ∂2
xh(x , t)− µ∂xh(x , t)− ηh(x , t) (1)

� γ: 2x variance of Brownian motion

� µ: drift in x

� η: random reset rate

2. ... subject to constraints:

� Continuity condition: h(x , t) continuous at x = 0

� Dirchlet boundary conditions (a and b are absorbing barriers):

h(a, t) = 0 h(b, t) = 0

� Probability conservation:
∫ b
a h(x , t)dx = 1 for all t

� Initial condition: h(x , 0) = ϕ(x) 5



What Happens at the Reset Point?

� Endogenous reset frequency F (t) = flow of probability out of [a, b]

� F (t) + exogenous random reset measure η must reenter at x = 0

� Lemma: PDE for the entire [a, b] interval:

∂th(x , t) = γ∂2
xh(x , t)− µ∂xh(x , t)− ηh(x , t) + δ(x) (F (t) + η)︸ ︷︷ ︸

Endog. component

� This would be easy if we knew the reset frequency F (t)!
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How does the Reset Frequency Depend on the Distribution?

� Lemma: Endogenous flow of probability out of [a, b]:

F (t) = (γ∂xh(a, t)− µh(a, t))− (γ∂xh(b, t)− µh(b, t))

� Endogenous: F (t) depends on h(x , t), which depends on F (t)...

� Start by finding the conditional solution for h(x , t)
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How does the Distribution Depend on the Reset Frequency?

� The textbook (conditional) solution to the KFE is

h(x , t) =

∫ b

a

G (x , y , t)ϕ(y)dy +

∫ t

0

G (x , 0, t − τ) (F (τ) + η) dτ

� which is convenient when written in terms of the Green’s function

G (x , y , t) =
∞∑
n=1

Xn(x)Xn(−y)e−λnt

Xn(x) ≡
√

2

b − a
e

µ
2γ

(x−a) sin

(
nπ(x − a)

(b − a)

)
λn ≡

γn2π2

(b − a)2
+

µ2

4γ
+ η
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Everything is Better in Frequency Space

� Messy PDE =⇒ try the Laplace transform, e.g.

F̂ (s) ≡ L{F}(s) =
∫ ∞

0

F (t)e−stdt

� Laplace transforms of KFE solution and frequency equation are:

ĥ(x , s) =

∫ b

a

Ĝ (x , y , s)ϕ(y)dy + Ĝ (x , 0, s)
(
F̂ (s) + η

)
F̂ (s) =

(
γ∂x ĥ(a, s)− µĥ(a, s)

)
−
(
γ∂x ĥ(b, s)− µĥ(b, s)

)

9
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We Can Solve the Reset Frequency without the Distribution

Lemma
The reset frequency satisfies

F̂ (s) =
α(s)

1− β(s)

where

β(s) =
∞∑
n=1

βn

s + λn
α(s) =

∞∑
n=1

αn

s + λn

θn ≡ (γ (X ′
n(a)− X ′

n(b))− µ (Xn(a)− Xn(b)))

βn ≡ θnXn(0) αn ≡ θn

∫ b

a

Xn(−y)ϕ(y)dy + ηβn

Proof
10



Invert the Transform to Get the Distribution

Theorem
The distribution h(x , t) is given by

h(x , t) = L−1{ĥ}(x , s)

where

ĥ(x , s) =

∫ b

a

Ĝ (x , y , s)ϕ(y)dy + Ĝ (x , 0, s)

(
α(s)

1− β(s)
+ η

)

11



Macroeconomic Dynamics

� Macroeconomy depends on the distribution h(x , t).

� Aggregate variable Z (t) (or some transformation thereof) requires

integrating some function fZ (x):

Z (t) =

∫ b

a

fZ (x)h(x , t)dx (2)

� Difficult? No: reset frequency provides a shortcut

� Specifically: transformed Ẑ (s) is linear in F̂ (s) in the frequency space
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Transformed, All Macro Dynamics are Linear in Reset Frequency

Lemma
The transformed aggregate Ẑ (s) satisfies

Ẑ (s) = αZ (s) + βZ (s)F̂ (s)

where

βZ (s) ≡
∫ b

a

fZ (x)Ĝ (x , 0, s)dx

αZ (s) ≡
∫ b

a

fZ (x)

∫ b

a

Ĝ (x , y , s)ϕ(y)dydx + ηβZ (s)

Proof

13



Why is the Reset Frequency Enough?

� KFE is a linear PDE:

� Solution is linearly separable into solution to initial condition and solution to

non-homogeneous forcing term

� We can solve how the distribution evolves from the initial condition without

resets (easy)

� What’s left? How the distribution responds to new agents entering at x = 0

at rate F (t).

� Z (t) depends only on h(x , t) which depends only on F (t). Skip the

intermediate step!

14
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In Most Cases This is Easy

� Could get hairy if fZ (x)e
λx doesn’t integrate nicely (rare)

� In paper, derive expressions for αZ (s), βZ (s) for common integrating

functions:

� fZ (x) = eψx : exponential, e.g. Golosov and Lucas (2007)

� fZ (x) = x : average state, e.g. Alvarez et al (2024)

� fZ (x) = x2: second moment

15



Application: Menu Costs

� Standard menu cost model a la Golosov and Lucas (2007)

� State variable is the markup gap x , which follows a Brownian motion:

dx = σdW

� No drift, symmetric menu costs =⇒ inaction region is [−b, b]

� Aggregate output is determined by

Y (t)η(ϵ−1)αϵ−1e(ϵ−1)µ∗︸ ︷︷ ︸
Z(t)

=

∫ b

a

e(1−ϵ)x︸ ︷︷ ︸
fZ (x)

h(x , t)dx (3)

16
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Effects of a Monetary Shock: Initial Condition

(a) Stationary distribution h(x ,∞) (b)

Figure 1: Money Supply Increase Reduces Markup Gaps
17
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(a) Stationary distribution h(x ,∞) (b) Initial condition ϕ(x)

Figure 1: Money Supply Increase Reduces Markup Gaps
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Effects of a Monetary Shock: Dynamic Effects

(a) Frequency of price resets (b)

Figure 2: Markup Gaps Return to Stationary Distribution
18



Effects of a Monetary Shock: Dynamic Effects

(a) Frequency of price resets (b) Dynamic distribution h(x , t)

Figure 2: Markup Gaps Return to Stationary Distribution
18



Application: Size-Dependent Effects of Shocks

� Large shocks are easy with the analytical solution

� Initial condition for a ∆ shock is for x ∈ [a, b]:

ϕ∆(x) = h(x +∆) + δ(x)

∫ a+∆

a

h(x)dx

where h(x) is the steady state, with h(x) = 0 for x /∈ [a, b]

� Summarize with the output IRF:

IRFY (t) = logY (t)− logY (∞) (4)

19
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Effects of a Monetary Shock: Size-Dependence

(a) IRFs to Shocks of Different Sizes (b)
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Effects of a Monetary Shock: Size-Dependence

(a) IRFs to Shocks of Different Sizes (b) Instantaneous Effects and CIRs

20



Why do Large Monetary Shocks Reverse Sign?

� Very large monetary shocks cause a contraction

� After shock, non-resetting firms shift left a small amount, resetting firms

shift right a large amount.

� ∆ small: leftward shift is small, affects most firms, average e(1−ϵ)x rises.

� ∆ large: most firms reset, rightward shift dominates.

� Crucial that output is determined by average e(1−ϵ)x , with 1− ϵ < 0.

� Common linear approximation avg (1− ϵ)x only applies to small shocks,

always has same sign

� Extreme case: all firms reset = mean-preserving reduction in variance.

Jensen’s inequality implies average e(1−ϵ)x falls.
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Application: History-Dependent Effects of Shocks

� Size-dependence implies history-dependence

� Shocks IRFs depend on initial conditions:

Ẑ (s) = αZ (s)︸ ︷︷ ︸
init. cond. term

+βZ (s)F̂ (s)

� Demonstration:

� Medium size shock ∆ = b at time 0

� Followed by small ∆ = 0.01 shock time t

� Delay t matters, even though shock is small: shocks to stationary

distribution have the largest effects!
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Effects of a Monetary Shock: History-Dependence

(a) IRFs to Shocks with Different Delays (b)
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Effects of a Monetary Shock: History-Dependence

(a) IRFs to Shocks with Different Delays (b) Instantaneous Effects and CIRs
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Conclusions

� Analytical solution with fixed boundaries

� Accurate in menu cost models: optimal boundaries barely move (Cavallo,

Lippi, Miyahara 2024)

� Ongoing work: analytical solution with optimal boundaries and small shocks

� The reset frequency is key! (determines distribution, IRFs)

� Advances our tools to understand:

� IRFs, especially nonlinear aggregation/higher moments

� Nonlinearities (e.g. size-dependence, history-dependence)

� Asymmetries (e.g. trend inflation)

� More?
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First define β(s) ≡ (γ∂x − µ)
(
Ĝ (a, 0, s)− Ĝ (b, 0, s)

)
and

α(s) ≡
∫ b

a
(γ∂x − µ)

(
Ĝ (a, y , s)− Ĝ (b, y , s)

)
ϕ(y)dy + ηβ(s):

(γ∂x − µ) ĥ(x , s) =

∫ b

a

(γ∂x − µ) Ĝ (x , y , s)ϕ(y)dy+(γ∂x − µ) Ĝ (x , 0, s)
(
F̂ (s) + η

)
=⇒ (γ∂x − µ)

(
ĥ(a, s)− ĥ(b, s)

)
= α(s) + β(s)F̂ (s)

=⇒ F̂ (s) =
α(s)

1− β(s)

Then derive expressions for α(s) and β(s).



β(s) =
(
γ∂x Ĝ (a, 0, s)− µĜ (a, 0, s)

)
−

(
γ∂x Ĝ (b, 0, s)− µĜ (b, 0, s)

)
=

∞∑
n=1

(γ∂x − µ) (Xn(a)− Xn(b))Xn(0)T̂n(s) =
∞∑
n=1

βnT̂n(s) =
∞∑
n=1

βn

s + λn

α(s) =

∫ b

a

(γ∂x − µ)
(
Ĝ (a, y , s)− Ĝ (b, y , s)

)
ϕ(y)dy + ηβ(s)

=
∞∑
n=1

(γ∂x − µ) (Xn(a)− Xn(b))

(∫ b

a

Xn(−y)ϕ(y)dy

)
T̂n(s) + ηβ(s)

=
∞∑
n=1

(γ∂x − µ) (Xn(a)− Xn(b))

(∫ b

a

Xn(−y)ϕ(y)dy

)
1

s + λn
+ η

βn

s + λn

=
∞∑
n=1

αn

s + λn

Back



Ẑ (s) =

∫ b

a

fZ (x)ĥ(x , s)dx

=

∫ b

a

fZ (x)

(∫ b

a

Ĝ (x , y , s)ϕ(y)dy + fZ (x)Ĝ (x , 0, s)
(
F̂ (s) + η

))
dx

=

∫ b

a

fZ (x)

(∫ b

a

Ĝ (x , y , s)ϕ(y)dy + Ĝ (x , 0, s)η

)
dx+

∫ b

a

fZ (x)Ĝ (x , 0, s)dxF̂ (s)

= αZ (s) + βZ (s)F̂ (s)
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