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Abstract

This paper characterizes a general class of macroeconomic models with
incomplete information, which feature endogenous signal processes. These
types of models are not always well-behaved, possibly featuring many equi-
libria, and solution algorithms may not converge to a fixed point. I intro-
duce an Information Feedback Regularity condition to discipline these models.
The regularity condition is necessary for a stable fixed point to exist. Stable
fixed points have nice properties: finite-dimensional fixed points approximate
infinite-dimensional stable equilibria arbitrarily well, and iterative algorithms
will converge to them. Most importantly, I prove a global uniqueness theorem:
if an equilibrium fixed point is stable, then it is the unique stable equilib-
rium. Next I derive a sufficient condition; if the signal process includes enough
idiosyncratic noise, then all fixed points must be stable, guaranteeing global
uniqueness. I study the conditions and equilibrium properties in a number of
example applications. Finally, I introduce an algorithm to solve the general
model, and provide resources to compute it.
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1 Introduction

This paper studies macroeconomic models with dispersed information and endoge-
nous signals.1 When signals are exogenous, models are well understood: there are
conditions that ensure equilibrium existence and uniqueness.2 However, modelers
may prefer signals to be endogenous, so that agents can learn from realistic sources,
such as employment or interest rates. When a model features endogenous signals,
when will its equilibrium be unique? This is an open question. This paper makes
progress towards answering it.

The first theoretical contribution is a regularity condition. When signals are en-
dogenous, agents’ choices depend on their information sets, which depend on agents’
choices, which depend on their information sets, and so forth. Is this feedback explo-
sive or well-behaved? The Information Feedback Regularity condition addresses this
question by quantifying this explosiveness.

Checking if a model satisfies Information Feedback Regularity is easy and useful.
Crucially, the regularity condition is necessary for a model to have a signal-stable
equilibrium. Signal-stable equilibria have many nice properties: they are robust to
small deviations in the signal process, they are locally unique, and an iterative al-
gorithm is guaranteed to converge to the solution given a good initial guess. More-
over, if they are infinite dimensional, they can be approximated arbitrarily well by
finite-dimensional signal-stable solutions. But perhaps the most valuable property of
signal-stable equilibria is that their global uniqueness is describable.

When is an equilibrium globally unique? For these types of models, the existing
literature cannot say, except in specialized settings.3 It is extremely challenging to
characterize uniqueness in general because solutions are often infinite dimensional
and feedbacks are typically non-contractive and nonlinear. However, I demonstrate
that it is possible to describe uniqueness within the class of signal-stable equilibria.
And again, the regularity condition is crucial. If Information Feedback Regularity
holds, then any signal-stable equilibrium must be the globally unique signal-stable
equilibrium.

Is it possible to guarantee global uniqueness? Yes, if a model satisfies the Suffi-
cient Idiosyncrasy Condition. The condition is satisfied when idiosyncratic noise is

1“Endogenous” signals or information has different meanings in different literatures. In this
context it is Huo and Takayama (2015)’s definition: the endogeneity refers to agents’ observation of
noisy signals containing endogenous variables. This contrasts with the large literature of endogenous
information acquisition, where agents choose to utilize a subset of available information, such as in
the rational inattention literature following Sims (2003).

2See for example Han, Tan, and Wu (2022), Huo and Takayama (2023), or Theorem 1 in this
paper.

3In dynamic models without endogenous state variables, uniqueness or multiplicity can some-
times be characterized. For example, some asset pricing models with endogenous information have
demonstrable multiplicity, as in Angeletos and Werning (2006), Hellwig, Mukherji, and Tsyvinski
(2006), or Angeletos, Hellwig, and Pavan (2007). In others such as Grossman (1976), the equilibrium
is unique.
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sufficiently large; this dampens the feedback from aggregate variables to expectations
back to aggregate variables. The sufficient condition implies the necessary condi-
tion; Information Feedback Regularity must hold as a consequence. The condition
guarantees uniqueness by ensuring that all fixed points are signal-stable. Sufficient
Idiosyncrasy may not hold in all models; in particular it requires that the model fea-
tures as many idiosyncratic shocks as signals. But as with the regularity condition,
the sufficient condition can be easily checked from the parameterization of a model
without solving it.

I derive these results for a general class of macroeconomic models that can include
endogenous state variables such as capital.4 I show how to rewrite these types of
models as a nonlinear signal operator that maps signal processes to signal processes.
A solution to the model is a fixed point of the signal operator; thus the theoretical
results derive properties of this operator. For example, the Information Feedback
Regularity condition controls how explosive the signal operator is in certain directions.
When a fixed point is signal-stable, repeated application of the signal operator will
converge to it. I refer to this solution algorithm as Signal Operator Iteration. But,
most theoretical results in this paper can be applied without using this particular
algorithm.5

To demonstrate how to apply these findings, I consider a number of simple exam-
ples drawn from the literature. It is straightforward to represent a variety of common
model structures in the general form described in this paper. From there, the regular-
ity condition is easily determined by calculating the norm of a block Toeplitz matrix.
In some cases, this can be done analytically; otherwise I provide code to do so numer-
ically. Then I show that choosing model parameterizations to satisfy the condition is
helpful for objectives such as ensuring fixed point existence, ensuring uniqueness, se-
lecting among multiple equilibria on the basis of stability, or understanding numerical
non-convergence.

4Endogenous states introduce additional challenges, so very few publications study such models
without additional assumptions that reveal the true state. The earliest example is Graham and
Wright (2010), who solve a version of the Neoclassical growth model with dispersed information.
Their model features two signals and two shocks, but there are confounding dynamics so that the
aggregate shock is not perfectly invertible from the aggregate signal. A recent example is Adams
(2023) which studies an optimal policy when dispersed information amplifies the macroeconomic
effects of noise shocks.

5The literature has several existing methods to solve models with endogenous information. Past
shocks can be revealed to agents so that the information problem remains static, as in (Lucas,
1972), or if there are as many shocks and signals, Blaschke root-flipping can be used to solve a
model analytically (e.g. Kasa (2000), Acharya (2013), or Rondina and Walker (2015)). But if
shocks are never revealed, solution is more challenging. Nimark (2017) uses an iterative algorithm
to calculate higher order expectations in a general asset pricing model with endogenous information;
this algorithm can be applied to more general settings without endogenous states, as Nimark (2008)
and Melosi (2016) do in New Keynesian models. When a model features endogenous states, another
option is Han, Tan, and Wu (2022), who improve upon this paper’s methodology by approximating
signals with a finite ARMA at each iteration.
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The strategy for the remainder of the paper is outlined as follows. In Section 2 I
define a general linear rational expectations model with incomplete information, and I
derive agents’ optimal policy function in terms of the signals they observe, and define
the signal operator. In Section 3 I introduce the Information Feedback Regularity
condition, describe Signal Operator Iteration, and prove various properties of the
operator, including the existence and uniqueness theorems. Section 4 introduces
and demonstrates the sufficient condition. Section 5 explores the simple examples
applying the method and drawing conclusions from the regularity condition. Section
6 concludes.

2 The General Macroeconomic Model

In this section I describe a general macroeconomic model with incomplete information.
I describe the macroeconomic structure, derive agents’ optimal policy function, and
characterize how the endogenous signal process is determined.

Consider a stationary linear macroeconomic model of the following form.6 The
equilibrium conditions for agent i at time t are:

0 = Ei,t[BX0Xi,t +BX1Xi,t+1 +BA0Ai,t +BA1Ai,t+1] (1)

Xi,t is an n×1 vector of endogenous variables. n = nC+nS where nC is the number of
control variables which are chosen at time t, while nS is the number of state variables
which are chosen at time t − 1. Assume that Xi,t is ordered so that the control
variables appear first. The mA × 1 vector Ai,t contains the information observed by
agents: mA linearly independent time series. This may include exogenous variables
such as economic shocks and signals, and it may include variables that agent i takes as
exogenous, but are endogenous in equilibrium, such as an economy-wide interest rate
or price level. When agents form expectations, their information set is the history of
the Ai,t vectors:

Ei,t[·] ≡ E[·|{Ai,t−j}∞j=0]

The matrices {BX0, BX1, BA0, BA1} contain coefficients encoding the n equilibrium
conditions of the model that determine agent i’s choice of the endogenous variables
in Xi,t. Additional equations that determine how Ai,t is determined are incorporated
when information is endogenized in Section 2.2.1.

6This general form encompasses a broad class of DSGE models, and is solved without information
frictions in Uhlig (1995), among many others. This structure also nests many popular types of
information frictions, including models that do not require forecasting, such as the beauty contests
in Section 5.1. The main limitations of the information structure in this paper are that: (1) it does
not allow for a discrete number of information sets (Han, Tan, and Wu (2022) introduce a method
which can solve such problems) and (2) it does not allow agents’ equilibrium conditions to be affected
by shocks or prices that do not enter their information set (this excludes models that assume agents
only forecast using e.g. a subset of prices).

4



2.1 The Policy Function

I will derive agents’ optimal choices as a policy function where the input is their
information set.

A linear solution to the model is policy that expresses Xi,t as a function of variables
Ai,t−k for k ≥ 0 such that (1) holds with equality for all t. This is not necessarily
a recursive policy function; it may depend on the entire history of Ai,k. Specifically,
define policy functions to be linear in the history of white noise forecast errors Wi,t.
With this basis, Ai,t is given by

Ai,t = A(L)Wi,t ≡
∞∑
j=0

AjL
jWi,t (2)

When the lag operator polynomial A(L) is invertible, this corresponds to the Wold
representation. The policy function can be expressed as a lag operator polynomial:

Xi,t = X(L)Wi,t ≡
∞∑
j=0

XjL
jWi,t (3)

Expressing policy functions in terms of information is convenient because forecast-
ing is straightforward: Ei,t[Wi,t+k] = 0 for all k > 0.7 Frequently the policy function
is expressed in term of the history of signals, and this form is easily recovered by
inverting A(L):

Xi,t = X(L)Wi,t = X(L)A(L)−1Ai,t (4)

where {Xj}∞j=0 are n × mA matrices. When expressed in terms of the innovations
Wi,t, the equilibrium condition (1) becomes

0 = BX0X(L)Wi,t + [BX1L
−1X(L)]+Wi,t +BA0A(L)Wi,t + [BA1L

−1A(L)]+Wi,t (5)

where [·]+ is the annihilation operator, which annihilates negative powers of L. I
assume that agents forecast linearly, which is optimal when shocks are normal. Then,
equation (5) follows from equation (1).

The equilibrium policy function can be expressed as a linear function of the fore-
cast errors Wi,t. Before deriving the formula, some notation must be defined.

The generalized Schur decomposition of the coefficient matrices is denoted by

BX0 = QT0Z BX1 = QT1Z

7This is the Wiener-Kolmogorov prediction formula. See Hansen and Sargent (1981) for a de-
scription in the context of rational expectations models. The Wiener filter in this case is used for
characterizing expectations in lieu of the Kalman filter is which more common in the literature;
the Kalman filter is less convenient in this situation because time is infinite, and when endogenous
information is introduced, the state space becomes infinite as well.
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where Q and Z are unitary, T0 and T1 are upper triangular, and the diagonal of T0

is arranged so that the generalized eigenvalues are ordered with increasing magni-
tudes. Partition the matrices into blocks, separating the first nS dimensions from the
remaining nC dimensions. Denote the partitions as:

T0 =

(
T0,SS T0,SC

0 T0,CC

)
T1 =

(
T1,SS T1,SC

0 T1,CC

)
Z =

(
ZSS ZSC
ZCS ZCC

)
I make two regularity assumptions about the model, following Klein (2000). Blan-

chard and Kahn (1980) make similar assumptions in a less general setting.

1. ZCC is invertible.

2. BX0 and BX1 have no undefined or unit generalized eigenvalues.8

Define the polynomials Ξ(L) and Θ(L) by

Ξ(L) ≡

 0 −L−1BC(L)−1T−1
0,CC

I 0
0 −BC(L)−1T−1

0,CC

Q∗ (6)

Θ(L) ≡

Z∗
(
−BS(L)−1

(
ZSCZ

−1
CC + T−1

1,SST1,SC

)
L −BS(L)−1T−1

1,SSL BS(L)−1
(
ZSCZ

−1
CC − T

−1
1,SST0,SCL

)
0 0 I

)
(7)

where BS(L) ≡ (I + T−1
1,SST0,SSL) and BC(L) ≡ (I + T−1

0,CCT1,CCL
−1).

Theorem 1 If BX0 and BX1 have exactly nC generalized eigenvalues outside the unit
circle, then the unique policy function is given by

X(L) = Θ(L)
[
Ξ(L)

(
BA1L

−1 +BA0

)
A(L)

]
+

Proof: Appendix A.1.
The purpose of Theorem 1 is to express the policy function in a way that can be

easily applied to the endogenous information case in Section 2.2. The requirement
that nC eigenvalues are outside the unit circle is not novel; it is equivalent to the
Klein (2000) generalization of the Blanchard and Kahn (1980) condition that there

8The ith generalized eigenvalue of the model is the ratio of diagonal elements T0,i,i/T1,i,i. If T1,i,i
is zero while T0,i,i is nonzero, the generalized eigenvalue is said to be infinite. If both are zero, then
the generalized eigenvalue is said to be undefined.
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must be as many unstable eigenvalues as there are contemporaneous jump variables
for the equilibrium to be uniquely determined.9

The advantage of expressing the policy function this way is that it provides a
single linear operator that maps agents’ information (encoded in A(L)) to their actions
(encoded in X(L)). This linearity is valuable for proving properties about the general
equilibrium in Section 3 such as existence and stability. Adding and multiplying lag
operator polynomials are linear operations, as is applying the annihilation operator.

2.2 Endogenous Information

This section details how the information process is formed, how it depends on en-
dogenous decisions, and the fixed point equation that it must satisfy in equilibrium.

In this section, I assume that the conditions for Theorem 1 are satisfied, so that
given an information process, agents have a unique policy function.

2.2.1 Endogenous Information Formation

When information is endogenous, the signals Ai,t are jointly determined in equilibrium
with the rest of the model. For Ai,t to be endogenous, the model requires an additional
equilibrium condition. This is the fixed point equation: the signal dynamics must be
consistent with the dynamics implied by the other endogenous variables. I proceed by
outlining a general framework for how endogenous information is formed, characterize
it in terms of lag operator polynomials, and then define the fixed points.

Suppose the signals Ai,t observed by agent i are a sum of exogenous signals SX,i,t
and endogenous signals SN,i,t:

Ai,t = SX,i,t + SN,i,t (8)

where all of these signals are mA × 1 vectors. These signals can be expressed as lag
operator polynomials times the white noise process of fundamental exogenous shocks,
εi,t, which has dimensionality mε ≥ mA and (without loss of generality) unit variance:

SX,i,t = SX(L)εi,t SN,i,t = SN(L)εi,t (9)

The causal square-summable polynomial SX(L) is a primitive of the model. But the
polynomial SN(L) depends on equilibrium behavior and aggregation. Define the sum
of the two polynomials as

Ai,t = S(L)εi,t ≡ SX(L)εi,t + SN(L)εi,t (10)

9Huo and Takayama (2023) impose a similar eigenvalue condition to ensure equilibrium exis-
tence and uniqueness in general models with exogenous signal processes. They go further and find
additional regularity conditions such that the eigenvalue condition is not only sufficient but also
necessary.
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Endogenous signals are determined by macroeconomic aggregates. This assumes
that the actions of atomistic agent i do not affect the information of any agent be-
yond their effect on the aggregate economy. The square-summable polynomial G(L)
encodes exactly how aggregate variables affect the endogenous signal. For example, it
may include aggregate resource constraints or adding up constraints, economy-wide
policy rules, sectoral demand, or other conditions relating aggregate allocations to id-
iosyncratic prices observed by the decision makers. G(L) is a primitive of the model,
and generates signals by

SN,i,t = G(L)Xt (11)

The right hand side of (11) includes no idiosyncratic terms, so SN,i,t is the same for
all agents; it is determined only by macroeconomic aggregates Xt.

2.2.2 The Wold Representation

Before describing aggregation, it is necessary to characterize how white noise innova-
tions Wi,t are determined by the fundamental shocks εi,t.

The signal Ai,t is equivalent to two polynomials: S(L)εi,t is a lag operator poly-
nomial of fundamental shocks, while Wold representation A(L)Wi,t is a lag operator
polynomial of white noise forecast errors. These white noise Wold innovations inno-
vations can be written as

Wi,t = A(L)−1S(L)εi,t ≡ W (L)εi,t

which has a variance matrix denoted by ΣW .
Appendix C.4 describes how to compute the Wold representation from the signal

autocovariance function. Let the mA×mA matrix Γj denote the jth autocovariance of
the signal Ai,t. The fundamental shock εi,t is a white noise process with unit variance,
so the autocovariance Γj is given by

Γj =
∞∑
k=0

SkS
′
k−j (12)

2.2.3 Aggregation

Aggregate variables affect the endogenous signal, so I must characterize how shocks
aggregate, and how aggregated shocks determine aggregate allocations.

The shock εi,t contains both aggregate and idiosyncratic dimensions. Suppose
there is a unit measure λ of agents i in the set I. Assume the idiosyncratic dimensions
are mean zero in the population. Then the average signal At ≡

∫
I Ai,tdλ(i) satisfies

At =

∫
I
S(L)εi,tdλ(i)
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because S(L)εi,t is linear in the sequence of shocks. Similarly, the aggregate endoge-
nous vector Xt ≡

∫
I Xi,tdλ(i) satisfies

Xt =

∫
I
X(L)Wi,tdλ(i) =

∫
I
X(L)W (L)εi,tdλ(i)

= X(L)W (L)

∫
I
εi,tdλ(i) (13)

Finally, let the projection matrix PG denote the diagonal matrix with ones in dimen-
sions corresponding to aggregate shocks and zeros elsewhere, so that∫

I
εi,tdλ(i) = PGεi,t ∀i ∈ I (14)

2.2.4 The Fixed Point Equation

The lag operator polynomial SN(L) is determined by combining equations (11), (13),
and (14):

SN(L) = G(L)X(L)W (L)PG (15)

Adding SX(L) to equation (15) yields the signal process implied by equation (10).
This defines the Signal Operator B(S(L)):

B(S(L)) ≡ SX(L) +G(L)X(L)W (L)PG (16)

which can be written as a function of S(L) because the polynomials X(L) and W (L)
are both determined by S(L). For cleanliness, I drop henceforth the (L) notation
when writing the signal operator.

Combining equations (10), (15), and (16) provides the equilibrium fixed point
equation:

S = B(S) (17)

The fixed point equation (17) states that the dynamics of the signal process must be
consistent with the dynamics it implies for the endogenous variables.10 If the signal
S satisfies the fixed point equation (17), then it is said to be an equilibrium signal
process.

The next sections and main results of the paper are focused on understanding the
operator B, how to compute it, and what can be said about its fixed points.

10Why are there no higher order expectations in the fixed point equation? In many models (e.g.
the beauty contests in Keynes (1936), or more recently in papers such as Morris and Shin (2002),
Woodford (2003), Allen, Morris, and Shin (2006), Makarov and Rytchkov (2012), or Nimark (2017))
agents must forecast the forecasts of others, which themselves depend on forecasts of forecasts,
and so on, leading to a hierarchy of higher order expectations. Explicitly finding this hierarchy is
challenging, but fortunately not necessary in general to solve for rational expectations equilibria.
Instead, it sufficient to require that all agents make their best possible forecasts given their infor-
mation sets. The fixed point equation does exactly this. This insight has been understood since
at least Townsend (1983), and Huo and Pedroni (2020) solve for expectations in a general class of
beauty contest models using this approach.
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2.3 A Simple Example: Asset Pricing with Confounding Dy-
namics

Throughout the theoretical sections that follow, it is useful to see the theorems ap-
plied to a common example. So this section introduces a model of asset pricing with
dispersed information and shows how to represent it in the form used in this paper.
Then later sections (3.2, 3.4, and 3.5) will discuss its theoretical properties further af-
ter new theorems are introduced. Section 4.2 modifies the model to include additional
idiosyncratic noise.

2.3.1 Model Assumptions

This asset pricing model features “confounding dynamics” (Rondina and Walker,
2021). There are as many shocks as signals, so it is possible for endogenous signals to
reveal full information. But there are also other equilibria where endogenous behavior
confounds inference of the underlying shocks. The regularity condition and signal-
stability uniqueness theorem help distinguish between these equilibria. Specifically:
full information is the only signal-stable equilibrium.

Agents forecast the value of an asset in the next period, discounted by a factor β ∈
(0, 1). The fundamental value of the asset is xt, which is determined stochastically:

xt = F (L)ut

with standard normal shocks ut ∼ N(0, 1) and rational F (L). Agents’ choice variable
is their discounted forecast:

pi,t = βEi,t[xt+1]

Agents do not observe the current value xt exactly, but they do see a noisy signal
zi,t with standard normal idiosyncratic error yi,t:

zi,t = xt + yi,t

and they also observe the average price pt:

pt =

∫
i∈I

pi,tdi

2.3.2 Representation in the General Framework

How does this model map to the general form? The signal vector is Ai,t =

(
zi,t
pt

)
.

The equilibrium condition is conveniently rewritten as pi,t = βEi,t[zi,t+1] because
forecasting xt+1 is equivalent to forecasting zi,t+1. In this case, mapping to the form
in equation (1) implies BX0 = −1, BX1 = 0, BA0 =

(
0 0

)
and BA1 =

(
β 0

)
10



The exogenous signal process for this model is SX(L)εi,t =

(
F (L) 1

0 0

)(
ut
yi,t

)
,

while the endogenous signal process is

SN(L)εi,t =

(
0
1

)
pt =

(
0
1

)[
L−1

(
β 0

)
A(L)

]
+
W (L)PG (18)

with PG =

(
1 0
0 0

)
to identify only the aggregate shock ut from the vector εi,t.

This model is simple because there is no dynamic interaction between endogenous

variables; the feedback operators are ΘΞ = I and G =

(
0
1

)
.

2.3.3 Equilibria in the Confounding Dynamics Model

One benefit of this particular example is that the solutions are known without resort-
ing to numerical methods.

Under full information, the equilibrium is pi,t = βft, where ft denotes the full
information forecast of xt+1:

ft ≡ [L−1F (L)]ut

This is always an equilibrium of the incomplete information model as well: if agents
observe pt = βft, then they form expectations by Ei,t[xt+1] = ft.

But if F (L) is noninvertible, then there exists a second equilibrium (or more)
featuring “confounding dynamics”. Denote the Wold representation of F (L)xt by

F (L)xt = AF (L)wFt

with causal and invertible AF (L) and white noise wFt . Furthermore, assume that
F (L) is such that the forecast polynomial is [L−1AF (L)]+ is invertible (e.g. F (L)
could be MA(1) or ARMA(1,1)).

Proposition 1 If F (L)ut is noninvertible with forecast errors wFt then pCDt ≡ β[L−1AF (L)]+w
F
t

is an equilibrium price process of the confounding dynamics model.

Proof: Appendix A.11.1
Full information and confounding dynamics are both equilibria of this model. But

as Section 3.5 shows, both equilibria are not stable.

3 Properties of the Signal Operator

In this section, I introduce the Signal Operator Iteration algorithm, a fixed point
of which solves the general model of Section 2. I define the Information Feedback
Regularity condition, and show that it is necessary for signal-stable equilibria, which
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are locally unique and have convergent sequences of approximations. Finally, I give
the global uniqueness theorem for signal-stable equilibria.

But first, I introduce notation and describe how to represent signals as Toeplitz
operators.

3.1 Block Toeplitz Operator Representation of Lag Operator
Polynomials

In order to characterize fixed points, it is useful to treat signal processes and other lag
operator polynomials as bounded linear operators on a Hilbert space. This is helpful
because operator properties are valuable for proving and understanding properties of
equilibrium. For example, the Information Feedback Regularity condition introduced
in Section 3.2 is defined in terms of the operator norm, and proving the uniqueness
theorems repeatedly uses operator properties. This representation is also helpful
because it maps directly to a computational strategy, as Appendix C makes clear.
Working with operators brings some additional notation, but the mathematics are
familiar: the bounded linear operators are simply infinite-dimensional matrices.

Specifically, an arbitrary n×m square summable lag operator polynomial Y (L) =∑∞
j=−∞ YjL

j is a bounded linear operator on an infinite sequence of shocks or another
time series. Y (L) has a representation as a block Toeplitz operator, which is the
infinite analog to a block Toeplitz matrix. For notation, let Y denote the Toeplitz
operator of the polynomial Y (L), which maps `2 → `2.11 The operator Y has n×m
blocks, so Y maps m × 1 shocks to n × 1 signals. For the arbitrary operator Y , the
matrix form is: 

Y0 Y−1 Y−2 Y−3 ...
Y1 Y0 Y−1 Y−2 ...
Y2 Y1 Y0 Y−1 ...
Y3 Y2 Y1 Y0 ...
...

...
...

...
. . .

 (19)

The product of two operators is the product of the infinite Toeplitz matrices, the
inverse Y −1 of the operator is the inverse of the infinite Toeplitz matrix, and so
forth.12 The lag operator L is the Toeplitz operator with identity matrices along the
first block diagonal below the main block diagonal. When Y (L) is causal, so that it
has Yj = 0 for all j < 0, the operator Y is lower block triangular.

When Y (L) is a constant matrix so that Yj = 0 for all j 6= 0, then the operator
Y is block diagonal with Y0 along the main block diagonal. To ease notation, I let
the matrix Y0 also denote its corresponding block diagonal operator, so that I do not

11Appendix E elaborates on how to represent time series in this space.
12For this and other useful properties of operators on `2, see Conway (2007), or Frazho and Bhosri

(2010) for Toeplitz operators in particular.
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have to define a new operator for every matrix that is added to or multiplied by a lag
operator polynomial.

The signal operator B(S) is a nonlinear operator, mapping SmA,mε → SmA,mε .13

SmA,mε denotes the Banach space of causal block mA × mε Toepliz operators that
map mε-dimensional random shocks to mA-dimensional signals. SmA,mε is a Banach
space, and the distance metric on this space is the norm ‖ · ‖S.14

3.2 The Regularity Condition

Will the Signal Operator Iteration algorithm be well behaved? Can a fixed point be
stable?

These questions are answered by evaluating whether the model satisfies a regu-
larity condition: Information Feedback Regularity (IFR). The condition characterizes
the potential size of the information feedback in the model. If the feedback is small
from signals to decisions to signals, then it is possible for stable equilibria to exist
such that Signal Operator Iteration will converge given a good initial guess. The
condition is given by:

Condition 1 A model satisfies Information Feedback Regularity if

‖GΘΞ(BA1L
−1 +BA0)‖ < 1

‖ · ‖ here denotes the operator norm, which measures by how much the operator can
increase the variance of any signal process. Accordingly, Condition 1 says that this
operator must decrease the variance of a signal. Because the operator maps `2 to
`2, the operator norm is the largest singular value, which is analogous to the matrix
norm in finite dimensions, and can be easily computed.

The non-causal operator GΘΞ(BA1L
−1 +BA0) depends entirely on the primitives

of the model in question. Therefore IFR can be evaluated without solving the model.
The norm of this operator represents how much B(S) can be changed by perturbing
the signal process S in a way that is spanned by a forecast error process W .15 To see
why, write out B(S) using Theorem 1 (and omitting the (L) notation):

B(S) = SX +GΘ
[
Ξ(BA1L

−1 +BA0)A
]

+
WPG (20)

Two components make up the feedback mechanism. The first component G deter-
mines how aggregate actions affect individuals’ signals; when entries in G are large,

13Lemma 11 proves this self-map.
14Appendix A.2 defines this space and norm formally.
15The annihilator [·]+ does not appear in the IFR definition because the non-causal components

of GΘΞ(BA1L
−1 +BA0) are relevant for perturbations linear in W but with very long lags; Theorem

3 shows that the entire non-causal operator gives the relevant necessary condition. Perturbations
orthogonal to W are more complicated: instead of a single expression, the relevant norm depends
on the signal S around which the perturbation is made. This is why calculating the general Fréchet
derivative of B (Theorem 8) is much more challenging.
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small changes in actions have large effects on the information process. The second
component ΘΞ(BA1L

−1 + BA0) determines how information maps to actions via the
policy function (Theorem 1); when this operator is large, small changes in the infor-
mation agents observe have large effects on their actions. Condition 1 may be violated
if either of these terms is too large. For example, if the feedback from information
to actions to information is via an inelastic channel (such as capital) the feedback
may be small so that the condition is satisfied. However, if the feedback is via a
very elastic channel so that the regularity condition is not satisfied, several problems
occur: an equilibrium will not be signal-stable (Theorem 3), and may not be solvable
(Corollary 1).

Information Feedback Regularity in the Confounding Dynamics Example

The regularity condition is easy to check in the asset pricing example (Section 2.3):

Proposition 2 Information Feedback Regularity is satisfied in the confounding dy-
namics model if β ∈ (0, 1).

Proof: Appendix A.11.1
The discount factor β controls the information feedback in the confounding dy-

namics model. When β is large, then small changes in average expectations have
large effects on the endogenous signal. But when β < 1, IFR holds, dampening the
feedback from expectations to signals to expectations.

3.3 Approximate Fixed Points

Fixed points of the true model (17) may be infinite-dimensional and uncomputable.16

It is helpful to first understand computable approximate fixed points of a finite ap-
proximation of the model Bτ . This is useful for characterizing numerical solution
methods, but this approximation is also used in the proofs of several theorems re-
garding the true model.

The finite approximation Bτ is defined:

Bτ (S) ≡ B(S)Pτ (21)

The projection operator Pτ truncates a signal process after lag τ , which I refer to as the
“order” of the approximation. This is a standard approach to approximating infinite-
dimensional Toeplitz operators known as the “finite section method” (Böttcher and
Silbermann, 2012). Fortunately, even though the true equilibrium may be of infinite
order, it can be approximated arbitrarily well with the finite section method; Theorem
2 formalizes this property.

16See Sargent (1991), Makarov and Rytchkov (2012), or Huo and Takayama (2023) among others.
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The solution algorithm Signal Operator Iteration repeatedly applies Bτ to find a
fixed point, so that guesses of the signal Sn and Sn+1 are related by

Sn+1 = Bτ (Sn) (22)

= (SX +GXnW nPG)Pτ

Appendix C describes this algorithm in detail and explains how to compute it nu-
merically.

A fixed point Ŝτ of Bτ is called an approximate fixed point (or colloquially, an
approximate solution of order τ) of the macroeconomic model, satisfying:

Ŝτ = Bτ (Ŝτ ) (23)

Finite-dimensional signals may be true solutions (for example, the beauty contest
models in Section 5.1) but in many cases will only be solutions to the finite approx-
imation Bτ of the true model B. A finite truncation is sufficient for all practical
purposes because an infinite dimensional object is never computable. Still, it may be
valuable to know whether the model has a solution without truncation, and whether
the finite solution is a good approximation to the infinite case. Theorem 2 affirms
this to be true.

The fixed point B(Ŝ) = Ŝ in equation (17) is the equilibrium fixed point of the true
Signal Operator defined in equation (16). Theorem 2 proves that if finite-dimensional
solutions converge, the limiting signal process is the fixed point of the infinite-order
signal operator. This is because the finite-order signal operator can approximate the
uncomputable infinite-order signal operator arbitrarily well (Lemma 3).

Theorem 2 (Limits of Approximate Fixed Points) If Ŝτ is a sequence of fixed
points satisfying Bτ (Ŝτ ) = Ŝτ and limτ→∞ Ŝτ = Ŝ, then Ŝ is a fixed point of the
infinite-order signal operator, i.e. B(Ŝ) = Ŝ

Proof: Appendix A.4
What is the practical implication of Theorem 2? If the model has an approximate

solution for large τ , and further increases to τ make little difference to the numer-
ical solution, then the infinite-order solution must exist, and can be approximated
arbitrarily well.17

Conversely, if an infinite-order true solution exists, will there necessarily be a
sequence of finite approximates that converges to it? Yes, if the true solution is
signal-stable. The next section defines signal-stability and explores its properties.

17The theorem also demonstrates an advantage of this signal truncation after τ lags, compared
to revealing the entire set of underlying shocks after τ periods. A limit of solutions under this
alternative approach may not be the solution to the true model.
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3.4 Equilibrium Stability and Uniqueness

In this section I study signal-stable equilibria and local uniqueness. I show Informa-
tion Feedback Regularity is necessary for signal-stable equilibria to exist.

Why do we care about stability? Signal-stable equilibria are interesting because
they are robust to small perturbations, and can be found numerically. They are also
informed by Information Feedback Regularity: they cannot exist without IFR. And
most importantly, signal-stable equilibria are globally unique.

3.4.1 Signal-Stability

Any equilibrium signal process Ŝ is a fixed point satisfying Ŝ = B(Ŝ). In general, the
set of possible equilibria is difficult to characterize because B is nonlinear. However,
it is possible to characterize a refined set of equilibria with an important property:
signal-stability.

Definition 1 An equilibrium fixed point signal satisfying Ŝ = B(Ŝ) is called signal-
stable if there exists some neighborhood of Ŝ such that for any S∆ in the neighborhood,
‖B(S∆)− B(Ŝ)‖S < ‖S∆ − Ŝ‖S. Otherwise, Ŝ is called signal-unstable.

What characterizes a signal-stable equilibrium? If you perturb the signal process,
the change in forecasts will not be so large that the implied endogenous signal changes
by more than the perturbation. Signal-unstable equilibria are typically cases where
small perturbations are explosive, but also the edge cases, where small perturbations
of input signals imply an equal perturbation of output signals. This type of stability
is known in other settings as “contractive stability”.18

The term “signal-stability” emphasizes that this concept refers to stability with
respect to perturbations to the signal process, as opposed to stability regarding only
policy functions or economic outcomes. Because the signal vector may include ex-
ogenous signals, a signal-stable equilibrium must be robust to perturbations in these
dimensions as well. In either case, the perturbation is not to the exogenous stochastic
process driving the economy (SX is always unchanged). Signal perturbations can be
thought of as random noise in the signals observed by agents, which may be driven
by either extrinsic sunspots or fundamental shocks.

Why are signal-stable equilibria interesting? They are robust to small changes in
the information process. In models with endogenous signals, the endogenous compo-
nent depends on the equilibrium signal itself. If an equilibrium is signal-stable, this
self-referential feedback is well behaved. If an equilibrium is signal-unstable, this feed-
back is explosive, so that small perturbations in the signal process can produce ever
larger perturbations in the endogenous component, diverging away from the equilib-
rium. As a practical matter, signal-unstable equilibria cannot necessarily be found

18This is because the operator B is a contraction on a neighborhood around a signal-stable fixed
point. Signal-stability is stronger than “exponential stability” which only requires that Bk is con-
traction, for some possibly large k. Appendix B discusses this latter form of stability.
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by iterative methods. As a conceptual matter, the explosive sensitivity could make
signal-unstable equilibria unlikely to be observed in the real world, where modeling
error or other perturbations appear.19 Still, signal-unstable equilibria are valid model
solutions and I can neither rule them out nor characterize them in general.

Signal-stability is a more powerful property than solvability. If a model is solvable
by iterative methods it is not necessarily signal-stable and signal-stability guarantees
local uniqueness (Theorem 4) while solvability does not. Applying Signal Operator
Iteration or another algorithm to solve a model does not guarantee that the solution is
well behaved, even if the algorithm converges: it is possible to converge in some region
around a fixed point, but diverge in another. For example, a saddle point features
this property, where the saddle path will converge to the point, but every other point
in any neighborhood around the solution will diverge. Or it is possible to have a
path that converges to an continuous connected region of valid fixed points, such that
iterative algorithms will converge to points on the boundary, which are surrounded by
other valid solutions. The possibility of such solutions is compounded by the infinite
dimensional nature of the space, where any particular dimension might be one in
which perturbations lead to divergence or alternative fixed points. Signal-stability
rules out such possibilities.

The method to check if a fixed point Ŝ is signal-stable is by evaluating the norm
of the Fréchet derivative DB(Ŝ) at that point

Property 1 Ŝ is a signal-stable equilibrium if and only if ‖DB(Ŝ)‖ < 1.

This property follows directly from the definition of signal-stability: the Fréchet
derivative is the operator-valued derivative of B, so the norm ‖DB(Ŝ)‖ is the size
of the greatest marginal deviation of B around Ŝ. Evaluating stability by calculating
the Fréchet derivative is analogous to evaluating the stability of the fixed point x of
a scalar-valued function f by calculating f ′(x). Theorem 8 gives the exact expression
for DB(Ŝ).

3.4.2 Stability and the Regularity Condition

Information Feedback Regularity determines if a model’s feedback from information
to actions to information can be explosive. So it is intuitive that signal-stability should
depend in some way on the regularity condition. Theorem 3 states that regularity
is a necessary condition for signal-stability when the model has a typical feature: if
an equilibrium signal process must include an aggregate signal. This is common in

19When considering signal-stable or unstable equilibria of dynamic systems, economists may be
reminded of the neoclassical growth model, where the equilibrium is a saddle path. Economists must
be careful not to conclude that signal-unstable equilibria are robust in other models: transversality
and resource constraints rule out any explosive paths in the neighborhood of the neoclassical growth
equilibrium, but this is not the case in general. In this paper, there are no general assumptions to
rule out a perturbation that could put the endogenous signal process on an explosive path away
from an unstable equilibrium towards a stable one.
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macroeconomic models with information frictions; agents observe something about
the aggregate economy even though they do not observe everything about it.20

Theorem 3 (The Necessary Condition) If all fixed points of a model contain ag-
gregate signals such that for any fixed point signal vector Ŝ there is an entry Ŝi sat-
isfying ŜiPG = Ŝi then Information Feedback Regularity is a necessary condition for
signal-stable fixed points to exist.

Proof: Appendix A.6
Does a signal-stable equilibrium exist? It is difficult to tell a priori because the

Fréchet derivative is generally unbounded on SmA,mε , due to the signal inverses that
appear in Theorem 8. Indeed, this is why uniqueness cannot be guaranteed in some
otherwise well-behaved full information models once information endogeneity is con-
sidered (Adams, 2022). As the next sections demonstrate, signal-stable equilibria have
many desirable characteristics, and Information Feedback Regularity is a necessary
condition. This property can be helpful: a practitioner can easily check IFR without
solving the model see if they have any hope of finding a signal-stable equilibrium.
Section 5 gives several examples of this application.

3.4.3 Useful Properties of Stable Fixed Points

One valuable property of signal-stable fixed points is that the operator B is a con-
traction near any fixed point. This implies that a fixed point is locally unique, which
is a weaker property than signal-stability: all signal-stable equilibria must be locally
unique, but the converse is not necessarily true. Theorem 4 formalizes this property.

Theorem 4 (Local Uniqueness) If Ŝ 6= 0 is a signal-stable fixed point of B, then
B is a contraction on a neighborhood around Ŝ, and Ŝ is a locally unique fixed point.

Proof: Appendix A.6
Another valuable property is that repeatedly applying the signal operator B to

any guess S0 that is sufficiently close to a signal-stable fixed point will necessarily
converge to the fixed point. Corollary 1 states this formally.

Corollary 1 If Ŝ is a signal-stable fixed point, then there exists a neighborhood
around it b(Ŝ) such that for any point S0 ∈ b(Ŝ)

lim
k→∞
BkS0 = Ŝ

20In most applications this condition is straightforward to check. If an exogenous signal with
idiosyncratic elements is added to all non-zero endogenous signals, then the condition will fail.
Otherwise, one can check the condition by determining if zero-valued endogenous signals imply non-
zero-valued endogenous signals, (i.e. if B(SX) 6= SX) thus ruling out fixed points without aggregate
signals. This condition is needed to prove necessity in Theorem 3 because it implies that there is a
dimension of the fixed point signal that the aggregating operator PG does not shrink. Thus, there
are dimensions for which the norm ‖GΘΞ(BA1L

−1 +BA0)‖ alone determines if vector lengths must
decrease or not.
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Proof: Appendix A.6
Stability is also helpful for understanding uncomputable infinite-dimensional equi-

libria. Theorem 5 says that if such an equilibrium exists and is signal-stable, then it
is the limit of a sequence of approximate signal-stable equilibria.

Theorem 5 (Computability) If Ŝ = B(Ŝ) is a signal-stable fixed point, then there
exists a sequence of signal-stable approximate fixed points Ŝτ = Bτ (Ŝτ ) such that

lim
τ→∞

Ŝτ = Ŝ

Proof: Appendix A.6
This result is a companion to Theorem 2, which had a practical application: if

a practitioner found a converging sequence of approximate solutions, they could be
confident that the limit was the true solution. In contrast, Theorem 5 implies that if
there is a true signal-stable solution, a converging sequence of approximations exists,
and the elements of that sequence will also be signal-stable.

Stability in the Confounding Dynamics Example

Multiple equilibria are possible in this example (Section 2.3). Are there any properties
that might lead a practitioner to prefer one? Yes, Proposition 3 states that the full
information equilibrium is always signal-stable if Information Feedback Regularity is
satisfied.

Proposition 3 The full information equilibrium of the confounding dynamics model
pt = βft is signal-stable if β ∈ (0, 1).

Proof: Appendix A.11.1
The full information equilibrium is necessarily signal-stable.21

3.5 Global Uniqueness of Stable Equilibria

Is an equilibrium globally unique? In general, this is a difficult question to answer,
because the mapping from information to actions to information is highly nonlinear
when a model features information frictions. However, it is possible to prove unique-
ness within a useful class: signal-stable equilibria. Theorem 6 states this result.

Theorem 6 If Information Feedback Regularity holds, then there exists at most one
signal-stable fixed point of B.

21This is true for more general models as well: the set of invertible operators is open, so small
deviations from signals that reveal full information will still reveal full information. And if IFR
holds, the full information equilibrium will be signal-stable.
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Proof: Appendix A.7
Theorem 6 applies to the true signal operator B, as well as any finitely approxi-

mated Bτ .
Again, Information Feedback Regularity is the crucial property: when it holds,

there exists at most one signal-stable equilibrium. General proofs of uniqueness are
challenging because of the nonlinearity of the signal operator B and non-compactness
of the signal space. If practitioners care about signal-stable equilibria a priori, this
theorem allows practitioners to guarantee a unique solution within this class by sat-
isfying Information Feedback Regularity.22

The proof is topological. It begins by defining a space Yτ in which I − Bτ is
a local homeomorphism and which must contain all signal-stable approximate fixed
points. Then the proof demonstrates that this space is path connected, and the
operator I − Bτ is a global homeomorphism on this space, ensuring a unique fixed
point. Finally, Theorems 4 and 5 extend the result to all signal-stable fixed points,
even those that are infinite-dimensional.

Signal-Stability and Uniqueness in the Confounding Dynamics Example

Proposition 3 said that the full information equilibrium in the simple example (Section
2.3) was signal-stable. But there are multiple equilibria. Are the other equilibria
signal-unstable? Yes.

This is a direct consequence of Theorem 6: the full information equilibrium of
the confounding dynamics model pt = βft is the unique signal-stable equilibrium.
Appendix D.2 demonstrates constructively in an example that even when IFR holds,
the confounding dynamics equilibrium is indeed signal-unstable. Specifically, there
is a small perturbation to the confounding dynamics equilibrium such that Signal
Operator Iteration will eventually diverge and approach the full information solution.

There is a lesson from this proposition for practitioners. In models with multiple
equilibria and confounding dynamics, signal-stability can inform equilibrium selection
if Information Feedback Regularity is satisfied.

4 A Sufficient Condition for Signal-Stability

Information Feedback Regularity is a necessary condition for global uniqueness. This
section provides a sufficient condition: Sufficient Idiosyncrasy. The condition ensures
that all fixed points are signal-stable, of which Theorem 6 says there can be at most
one.

The central insight is that for a model with enough idiosyncratic shocks, as the
idiosyncratic variance becomes large, it dampens the information feedback. In the

22Moreover, if all fixed points of a model must contain aggregate signals, Theorem 3 applies and
the IFR requirement in Theorem 6 is redundant: without IFR, no signal-stable fixed points can
exist.
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limit, as the relative variance of aggregate to idiosyncratic shocks goes to zero, the
model approaches an exogenous information model, which has a unique solution so
long as the usual Blanchard-Kahn condition is satisfied (Theorem 1).23 Theorem 7
in this section shows that there is a uniqueness region where idiosyncratic noise is
sufficiently large but finite.

The condition is strong and may not hold in many models. In particular, it
requires that all signals are subject to idiosyncratic noise. But if the condition holds,
it guarantees that a model has a unique equilibrium.

4.1 The Sufficient Idiosyncrasy Condition

Consider SX,0(I − PG), the contemporaneous component of the exogenous idiosyn-
cratic process. In this expression, SX is the exogenous process, SX,0 is the matrix
corresponding to contemporaneous shocks, and the matrix I−PG isolates the idiosyn-
cratic dimensions. The signal variance due to contemporaneous idiosyncratic shocks
is therefore given by the matrix

ΣI ≡ SX,0(I − PG)S∗X,0 (24)

If this variance matrix is invertible, let r(Σ−1
I ) denote the spectral radius of the inverse,

i.e. the smallest eigenvalue of ΣI . If the variance is not invertible, then as a convention
write r(Σ−1

I ) =∞ even though strictly speaking, Σ−1
I does not exist.

Some additional notation is worth reviewing for the sufficient condition. First, the
norm of the information feedback is ‖GΘΞ(BA1L

−1 +BA0)‖. When this norm is less
than one, IFR is satisfied. Secondly, the “forecast radius” RN is described in Lemma
2 as a bound on the endogenous signal SN . The radius is given by

RN =
‖GΘΞ(BA1L

−1 +BA0)‖‖SXPG‖S + ϑI
1− ‖GΘΞ(BA1L−1 +BA0)‖

where
ϑI = ‖GΘ‖‖

[
Ξ(BA1L

−1 +BA0)SX(I − PG)
]

+
‖S

is similar to the transformation generating the endogenous signal SN , except where the
idiosyncratic component SX(I−PG) is forecasted instead of the aggregate component
SPG in equation (15).

Condition 2 A model satisfies Sufficient Idiosyncrasy if

r(Σ−1
I ) <

1− ‖GΘΞ(BA1L
−1 +BA0)‖2

4R2
N

23Levine, Pearlman, Wright, and Yang (2024) use a related property to study the behavior of
endogenous signal models in the limit as idiosyncratic noise becomes infinitely large.

21



The spectral radius r(Σ−1
I ) is positive, so the Sufficient Idiosyncrasy Condition

(SIC) implies that Information Feedback Regularity must hold: ‖GΘΞ(BA1L
−1 +

BA0)‖ < 1.
SIC also implies that there are at least as many idiosyncratic shocks as there are

signals, because it is necessary for ΣI to be invertible. In what types of settings will
this hold? Models where the endogenous signals are aggregates – such as asset prices
in the confounding dynamics example – will necessarily fail this condition. However,
if agents are forecasting exclusively using idiosyncratic variables then some parame-
terization will satisfy SIC.24 In the next section I demonstrate this by modifying the
confounding dynamics model so that both signals are distorted by idiosyncratic noise.

But first, why is the SIC useful? It ensures equilibrium uniqueness:

Theorem 7 If the Sufficient Idiosyncrasy Condition holds, then if a model has a
fixed point, it is the globally unique fixed point.

Proof: Appendix A.8
Theorem 7 says that the SIC is a sufficient condition for global uniqueness.This is

because SIC guarantees that any fixed point is signal-stable. It also guarantees that
IFR holds, so Theorem 6 implies that there can be at most one signal-stable fixed
point.

4.2 The Sufficient Idiosyncrasy Condition in the Confound-
ing Dynamics Model

To demonstrate how the Sufficient Idiosyncrasy Condition (SIC) guarantees a globally
unique fixed point, this section modifies the confounding dynamics model discussed
thus far.

SIC fails in the original model introduced in Section 2.3. This is because there are
two signals but only one idiosyncratic shock, so the variance matrix ΣI is uninvertible.

Therefore, I modify the model by introducing idiosyncratic noise εvi,t ∼ N(0, 1) to
agents’ observation of the price. The two signals that agents observe are now

zi,t = xt + yi,t si,t = pt + τ
− 1

2
v εvi,t

where εvi,t is entirely idiosyncratic. The standard deviation of the noise is τ
− 1

2
v , which

is convenient to express in terms of the noise precision τv. In order to have a simple
analytical solution in this example, I assume the fundamental value of the asset is
given by

xt = (1 + αL)ut

24Examples of models with idiosyncratic signals alone include forecasting from firm-level produc-
tivity in Venkateswaran (2014), house prices in Chahrour and Gaballo (2020), household income in
Adams and Rojas (2024), or local interest rates in Angeletos and Lian (2020), among many others.
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where α > 1 and ut ∼ N(0, 1), which matches the example in Appendix D. This is
an uninvertible MA(1), whose Wold representation is

xt = (1 + θL)wxt

where θ = α−1 and the white noise process is wxt = α θ+L
1+θL

ut.
Let the noise term yi,t have a similar form:

yi,t = (1 + θL)τ
− 1

2
y εyi,t

where again εyi,t is standard normal, and the noise standard deviation is written in
terms of the precision parameter τy.

Because the price signal si,t now has idiosyncratic noise, full information is no
longer an equilibrium of this model. But Proposition 4 states that there is at least
one equilibrium whose aggregate price is proportionate to the confounding dynamics
equilibrium of the original model.

Proposition 4 The modified confounding dynamics model features an equilibrium
where the aggregate price p̄t is given by

p̄t = bwxt

for some b, and b is unique if and only if

27β2τvτ
2
y > 4(βτv − τy − 1)3 (25)

Proof: Appendix A.9
Proposition 4 makes it clear that the precision of the idiosyncratic noise is relevant

for global uniqueness. The inequality (25) is satisfied only if τv is sufficiently large:
when the precision of the idiosyncratic signal is high, then the model has multiple
equilibria.

This is the force that the Sufficient Idiosyncrasy Condition constrains in the gen-
eral class of models. The SIC requires that the idiosyncratic precision is sufficiently
small to guarantee that all fixed points are stable. Proposition 5 demonstrates, giving
the SIC for this modified confounding dynamics model. It shows that if the precisions
τy and τv are sufficiently small, a unique equilibrium is guaranteed.

Proposition 5 In the modified confounding dynamics model, the Sufficient Idiosyn-
crasy Condition is satisfied if

max{τy, τv} <
(1 + β)(1− β)3

4β2
(√

1 + α2 + θτ
−1/2
y

)2
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Proof: Appendix A.9
Figure 1 illustrates the relationship between idiosyncratic noise and multiplicity.

The model parameters are α = 2,
√
τy = .2 (i.e. the standard deviation of εyi,t is 5

times as large as the standard deviation of the fundamental shock ut) and β = 0.1 so
that the information feedback is limited. Panel (a) examines how the model solution
depends on the root precision

√
τ v (the inverse of the standard deviation of the

idiosyncratic shock εvi,t). The y-axis measures the coefficient b in the solution p̄ = bwxt
described in Proposition 4. When the precision is low, Theorem 7 guarantees that
there is a unique solution: the gray region indicates when the SIC holds. Conversely,
when the precision is sufficiently large, the model has multiple equilibria.

(a) Multiplicity and SIC: Solutions (b) Multiplicity and SIC: Regions

Figure 1: Equilibrium Uniqueness in the Confounding Dynamics Model with Idiosyn-
cratic Noise

The left panel plots the solutions described by Proposition 4 for the modified confounding dynamics
model with idiosyncratic noise. The model parameters are α = 2,

√
τy = .2, and β = 0.1; the figure

shows how the solutions vary with the signal precision τv. The right panel also varies β on the
y-axis. The yellow region has multiple equilibria; in the blue region the SIC is satisfied, so Theorem
7 ensures that the solution is unique.

There is a fundamental trade-off between idiosyncratic noise and information feed-
back. In general, when the information feedback ‖GΘΞ(BA1L

−1 +BA0)‖ is large, then
more idiosyncratic noise is needed to make r(Σ−1

I ) small enough for the SIC to hold.
Panel (b) of Figure 1 illustrates this trade-off in the model. The calibration is un-
changed from Panel (a), except now the information feedback parameter β is allowed
to vary, and the figure plots the combinations of

√
τv and β that imply multiplicity

or SIC. When the information feedback β is small, then SIC is easily satisfied, and
there is only multiplicity for extremely high precisions. In the limit as β → 0, there
is no multiplicity at all. However, when β is larger, then the noisy signals must be
less precise in order for the model to have a unique equilibrium. Eventually, a large
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enough information feedback implies that SIC cannot hold for any τv. Theorem 7
implies that the two regions in the figure can never overlap: if SIC is satisfied, the
model must have a unique equilibrium.

5 Examples Applying Information Feedback Reg-

ularity

This section applies lessons from Section 3 to a number of additional simple examples
motivated by the literature.25 These examples demonstrate how to map a variety
of different models into this paper’s general form, how to determine if Information
Feedback Regularity holds, and how to draw useful conclusions based on the answer.

5.1 Beauty Contests with Endogenous Information

This section studies a beauty contest model, modifying a structure resembling An-
geletos and La’O (2010) with endogenous signals. The exercise demonstrates how to
represent a static nowcasting problem in the general macroeconomic form of Section
2, and how to apply the theoretical results from Section 3 in a model with analytical
solutions. Specifically, this model demonstrates a setting in which Information Feed-
back Regularity ensures equilibrium uniqueness, and where an equilibrium may not
exist at all if the regularity condition does not hold.

5.1.1 A Beauty Contest Model

Agent i chooses the price pi,t based on the exogenous signal si,t and their expectation
of the average signal pt:

pi,t = ϕsi,t + αEi,t[pt] (26)

where ϕ > 0 and α > 0.
Agents receive the vector of signals:(

zi,t
si,t

)
=

(
pt + σuui,t
θt + σvvi,t

)
with θt, ui,t and vi,t all distributed ∼ N(0, 1).

5.1.2 Representation in the General Macroeconomic Framework

This model is structured as a nowcasting problem, while the general framework is
structured as a forecasting problem. To map static beauty contests into the general

25For a more sophisticated application, see Adams (2023), which studies optimal policy in a model
with endogenous signals and capital.
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model, we will introduce an additional signal kt = pt−1 which reveals the previous
period’s average action. Thus agents’ signal process is given by

Ai,t ≡

 zi,t
si,t
kt


which in operator form is

Ai,t = S(L)εi,t =

 0 σu 0
1 0 σv
0 0 0

 εi,t +

 1
0
L

 pt

where εi,t =

 θt
ui,t
vi,t

. The operator G(L) =

 1
0
L

.

With this signal structure, the equilibrium condition (26) rewritten in the general
model form is

0 = Ei,t
[
−pi,t +

(
0 ϕ 0

)
Ai,t +

(
0 0 α

)
Ai,t+1

]
Thus the matrices mapping to the general representation (1) are given by

BX0 = −1 BX1 = 0 BA0 =
(

0 ϕ 0
)

BA1 =
(

0 0 α
)

with the policy function for pi,t = X(L)εi,t:

X(L) =
[(
BA0 +BA1L

−1
)
A(L)

]
+

which implies Θ(L)Ξ(L) = I.
For the beauty contest, the signal operator B(S) = SX(L) + G(L)X(L)W (L)PG

is

B(S) =

 0 σu 0
1 0 σv
0 0 0

+

 1
0
L

[( 0 ϕ αL−1
)
A(L)

]
+
W (L)

When is Information Feedback Regularity satisfied? The non-causal IFR operator

in Condition 1 is GΘΞ(BA1L
−1 +BA0). In the beauty contest G =

 1
0
L

, ΘΞ = I,

and (BA1L
−1+BA0) =

(
0 ϕ αL−1

)
so Information Feedback Regularity is satisfied

if

∣∣∣∣∣∣
∣∣∣∣∣∣
 0 ϕ αL−1

0 0 0
0 Lϕ α

∣∣∣∣∣∣
∣∣∣∣∣∣ < 1.

When is this true? In the following section the norm is calculated numerically,
as usual. But sometimes helpful analytical bounds can be found, because norms are
bounded below by the norms of rows and columns. Thus Proposition 6 gives some
necessary conditions.
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Proposition 6 Information Feedback Regularity is satisfied in the beauty contest
model only if ϕ < 1√

2
, α < 1√

2
, and ϕ2 + α2 < 1.

Proof: Appendix A.11.2
The proof serves as an example of how to construct the block Toeplitz represen-

tation of a non-causal operator, how to lower bound its norm analytically, and how
to translate it to a necessary condition on the parameters of an economic model.

The upper bound on α implies that for IFR to hold, the beauty contest cannot
feature too much strategic complementarity. If agents put too much weight on being
close to the average forecast, the information feedback will be too strong. As the next
section shows, this can allow for multiple equilibria, or no equilibrium at all.

5.1.3 Beauty Contest Equilibrium Properties

The beauty contest with endogenous information is an example of when checking the
Information Feedback Regularity condition is useful in practice, because this model
can have multiple solutions. Theorem 6 guarantees that there can be only one signal-
stable solution. In this model, the regularity condition is even stronger in practice
than in theory: it rules out multiple equilibria entirely.

The beauty contest has known analytical solutions. θt is the only aggregate shock,
so let pt = bθt with b to be found.

How do agents nowcast pt? They receive two noisy signals of θt: si,t = θt + σvvi,t
with precision τv ≡ 1

σ2
v

and
zi,t
b

= θt +
σuui,t
b

with precision τub
2 ≡ b2

σ2
u
. By Lemma 12

their expectation of θt is

Ei,t [θt] =
τvsi,t + τub

2 zi,t
b

1 + τv + τub2

They choose the price pi,t by

pi,t = ϕsi,t + αEi,t[bθt]

= ϕsi,t + αb
τvsi,t + τub

2 zi,t
b

1 + τv + τub2

The noise shocks ui,t and vi,t are mean zero across agents, so the average price is given
by

pt = ϕθt + αEi,t[bθt]

= ϕθt + αb
τvθt + τub

2θt
1 + τv + τub2

The conjecture pt = bθt implies a single equation for b:

b = f(b) ≡ ϕ+ αb
τv + τub

2

1 + τv + τub2
(27)
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(a) Multiplicity and Regularity Regions (b) Maximum Discriminants under IFR

Figure 2: Equilibrium Uniqueness in the Beauty Contest with Endogenous Signals

The left panel plots the subsets of the parameter space where the beauty contest model has a unique
or multiple solutions, with precision parameters τu = 0.3 and τv = 0.15. The blue region identifies
the parameters for which Information Feedback Regularity holds. The right panel shows that the
disjointedness of the yellow and blue subspaces are not specific to the parameterization, by plotting
the maximum discriminant achievable by choosing α and ϕ, for each combination of τu and τv. A
negative discriminant implies the model has a unique solution.

which has a cubic representation:

b3τu(1− α)− b2τuϕ+ b(1 + τv(1− α))− ϕ(1 + τv) = 0 (28)

There is a unique b that satisfies this equation if and only if the discriminant of
the cubic is strictly negative. In the edge case where the discriminant is exactly zero,
then there are two unique values for b that satisfy the cubic, corresponding to one
signal-stable and one signal-unstable equilibrium. Information Feedback Regularity
guarantees that one of these two cases must be true. As an example, consider the
case where τu = 0.3 and τv = 0.15. Figure 2 panel (a) plots the determinacy region
under this calibration for different choices of α and ϕ. When α and ϕ are near 1,
there are multiple solutions.26 Otherwise, there is a unique solution.

The region where Information Feedback Regularity is satisfied is unconnected:
numerically, the regularity condition guarantees a unique solution. And the Sufficient
Idiosyncrasy Condition implies IFR, so the region where SIC holds (a subset of the
blue region) must also be disjoint from the multiplicity region (Theorem 7). What of
the intermediate region without multiplicity but where IFR fails? In this region of the
parameter space, there is a unique solution but it must be signal-unstable (Theorem
3).

26IFR fails in these cases, so no solution is signal stable by Theorem 3. However, two solutions
are “exponentially” stable (Appendix B).
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In this model, an equilibrium is signal-stable if pt is not too sensitive to pertur-
bations to the signals in any direction. This means that it is not enough to assess
stability by comparing the sensitivity of value b alone: if f ′(b) < 1 (for f(b) defined
as in equation (27)), it does not imply signal-stability. f ′(b) < 1 only implies that pt
is stable with respect to deviations in the θt dimension of zi,t. Signal-stability in this
paper is a stronger condition. If IFR fails in the beauty contest model, then there
exists a perturbation that is linear in zi,t and si,t that changes b by more than the
perturbation size.

The uniqueness result is independent of the model’s calibration. Panel (b) demon-
strates that this unconnectedness holds for any choice of τu and τv. The contours in
panel (b) represent the maximum discriminant such that Information Feedback Reg-
ularity holds for any pair of ϕ ∈ (0, 1) and α ∈ (0, 1). All interior points in this
space are negative, so the regularity condition only holds when there is a unique
signal-stable equilibrium.

5.2 The Singleton Model

This section studies the asset pricing model considered in Singleton (1987) and solved
in Nimark (2017). This model serves as an example for using the general structure
in Section 2 and evaluating the regularity condition analytically. Second, this model
is a widely-used standard that is simple enough to be well-understood but interest-
ing enough to present computational challenges by featuring endogenous signals and
infinite-order dynamics. This lets the model serve as a check of the computational
accuracy of Signal Operator Iteration. The following environment uses Nimark’s
structure and notation.

5.2.1 Singleton’s Model of Asset Pricing with Dispersed Information

Agents receive an exogenous signal zi,t = θt + σηηi,t where θt is an aggregate funda-
mental and ηi,t is idiosyncratic white noise. Agents also observe the market-clearing
price pt, which satisfies

pt = −(θt + σεεt) + βft

where εt is an aggregate supply shock. θt is assumed to be AR(1):

θt = ρθt−1 + σuut

with ut, εt, and ηi,t all standard normal. ft denotes the average forecast:

ft =

∫
i

Ei,t[pt+1]di

and β ∈ (0, 1) is the discount factor.
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This model can be neatly put into the general form (1) by letting the individual
forecast fi,t be the endogenous variable:

Xi,t = fi,t Ai,t =

(
pt
zi,t

)
With this assignment, the agent’s equilibrium condition is fi,t = Ei,t[pt+1] and the
model’s matrices are

BX0 = 1 BX1 = 0 BA0 = 0 BA1 =
(
−1 0

)
Given the process for Ai,t, the policy function is

X(L) = −[BA1L
−1A(L)]+

=
(

1 0
)

[L−1A(L)]+

thus Θ(L)Ξ(L) = I.
The endogenous signal process is

SN(L) =

(
β
0

)
ft

thus G(L) =

(
β
0

)
Is Information Feedback Regularity satisfied? Always:

‖GΘΞ(BA1L
−1 +BA0)‖ = ‖

(
β
0

)(
1 0

)
L−1‖

= β < 1

Therefore a signal-stable equilibrium is possible (Theorem 3) and there will be
at most one (Theorem 6). However, global uniqueness is not guaranteed by any
theorem: the Sufficient Idiosyncrasy Condition fails because one signal is entirely
aggregate. Instead, global uniqueness can be checked (but not conclusively proven)
by searching numerically for alternatives. I have found none.

5.2.2 Singleton Solution

I solve this model in three ways to compare the efficacy and accuracy of Signal
Operator Iteration. First, I replicate the original Nimark (2017) solution which uses
a Kalman filter and tracks higher order expectations. Second, I apply the Han, Tan,
and Wu (2022) method of analytic policy function iteration, which approximates time
series with rational polynomials. Third, I apply Signal Operator Iteration with several
different truncation orders.
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(a) Price Responses to Fundamental Shocks (b) Computation Time and Error

Figure 3: Singleton Model Computation by Truncation Order

The left panel plots the impulse response function in the singleton model for different truncation
orders. The right panel plots how the computation time and accuracy depends on the truncation
order.

Figure 3 panel (a) plots the impulse response of the asset price to a one standard
deviation shock ut to the fundamental. Each impulse response is calculated in a
different way. The solid red line is the solution from Nimark (2017). The dotted blue
line uses the algorithm introduced by Han, Tan, and Wu (2022). They overlap almost
perfectly. The gray dashed lines correspond to Signal Operator Iterator with different
truncation orders. When the truncation order is small (e.g. τ = 10) the fixed point is
not a good approximation of the true solution, which has large covariances beyond 10
lags. However, as the truncation order increases, the solutions converge to Nimark’s.
For τ ≥ 50, the impulse response functions are visually indistinguishable.

Increasing the truncation order increases accuracy. But Figure 3 panel (b) demon-
strates that there is a computational trade-off. The solid blue line plots to the solution
error against the approximation order. For a fixed point Ŝτ of approximated signal
operator Bτ , I calculate the solution error as ‖Ŝτ − Ŝ300‖S (i.e. relative to the solution
for a high order approximation). Then I normalize the errors relative to the highest
value at τ = 10. As expected (Theorem 2) the solution error decreases as τ increases.
The trade-off is that the computation takes longer: the dashed red line plots com-
putation time (normalized relative to τ = 100) when the convergence criterion is
‖ · ‖S = 10−6.

At least in this model, Signal Operator Iteration is not as efficient as the Han,
Tan, and Wu (2022) method, who approximate time series with an ARMA process
instead of the MA used in my approach. Using the default settings for their algorithm,
the model converges approximately 2− 3 times faster than Signal Operator Iteration
takes to achieve the same solution error. For computational efficiency and generality,
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their method is preferred. The advantage of Signal Operator Iteration is its simplicity
and known theoretical properties. While most results from Section 3 apply to models
independently of how they are solved, the convergence results (Theorems 2 and 5)
are specific to Signal Operator Iteration.

5.2.3 Information Feedback Regularity in the Singleton Model

Checking Information Feedback Regularity is useful for practitioners who want to
know if they can solve a model. Theorem 3 implies that if IFR is not satisfied, then
there cannot exist a signal-stable equilibrium, so a practitioner can find it difficult to
calculate a solution. In practice, signal-unstable solutions may sometimes be found
even when the feedback is modestly > 1, but large feedbacks are challenging to over-
come, especially given that no solution is guaranteed to exist at all. The Singleton
model is a useful setting to demonstrate this usefulness, because the regularity con-
dition is controlled by a single parameter: IFR is satisfied if and only if β < 1.

Figure 4: Convergence and Information Feedback Regularity

The figure plots how the signal error in the Singleton model after 50 iterations of SOI depends on
the information feedback and autocorrelation. The units are normalized to the signal error of the
first guess, which is initialized as the exogenous signal.

Figure 4 demonstrates how the information feedback affects numerical convergence
of Signal Operator Iteration by solving the Singleton model for a variety of values of
β. In all cases, the initial guess is only the exogenous signal, setting the endogenous
component to zero. Then, the y-axis measures the signal error after 50 iterations,
relative to the error of the initial guess. The blue line is otherwise the baseline
calibration, where ρ = 0.90. The baseline model (β = 0.99) is easily solved with
50 iterations, so the relative error is near zero. And even when β = 1 and IFR
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is no longer satisfied, the algorithm still converges, even though the solution is no
longer signal-stable. However, when the information feedback increases further, the
algorithm no longer converges, and diverges rapidly when β > 1.15; in this range, the
relative error is greater than one, so repeated iterations have increasingly large errors.
But IFR controls signal-stability independent of the exogenous signal component, so
an alternative exogenous signal may behave differently. This is the case for the red
dashed line, which plots the relative errors when ρ = 0.99. In this case, signal
operators diverge rapidly when the information feedback is only 1.05.

5.3 Unstable Island-Level Problems

Information Feedback Regularity can help clarify why some types of models feature
instability that makes them challenging to solve numerically. In the beauty contest
model (Section 5.1), instability occurred when the feedback from economic decisions
to information was large. Alternatively, instability may occur when the feedback
from information to economic decisions is large. In both cases, Information Feedback
Regularity fails.

This latter type of instability often occurs in models where agents learn from
cross-island asset markets. To demonstrate how this affects the feedback, I study the
dispersed information New Keynesian model of Lorenzoni (2009).

5.3.1 The Lorenzoni Model

Lorenzoni (2009) features a New Keynesian model with dispersed information. Agents
learn from endogenous signals including cross-island demand, inflation, and nominal
interest rates. I adopt the original notation, except islands are denoted by i, and the
nominal interest rate is rt.

The island’s problem is characterized by two equations. The first is an Euler
equation:

0 = Ei,t [ci,t − ci,t+1 + rt − πi,t+1]

where πi,t+1 denotes inflation in island i’s consumer goods. Consumption ci,t is an
endogenous control, while agents take both the nominal interest rate rt and πi,t+1 as
exogenous. The second equation is an island-specific New Keynesian Phillips curve:

0 = Ei,t
[
pi,t−1 − (λ(1 + ζγ) + β + 1) pi,t + βpi,t+1 + λci,t + λ

(
pi,t − (1 + ζ)ai,t + ζdi,t

)]
where the producer price pi,t is an endogenous control. Agents take the remaining
variables as exogenous signals: the input price pi,t, productivity ai,t and demand di,t.
β ∈ (0, 1) is the discount factor, ζ > 0 is the Frisch elasticity, γ > 0 is the elasticity

of substitution across islands, and λ ≡ (1−θ)(1−βθ)
θ

> 0, where θ ∈ (0, 1) is the Calvo
price adjustment parameter.

This model features unit roots in prices (typical for a New Keynesian model) as
well as real variables (because aggregate productivity follows a random walk) so I
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perform two transformations. First, I define c̃i,t ≡ ci,t − ai,t. Second, I express the
New Keynesian Phillips curve in differences, denoted by ∆, with inflations written
πi,t = ∆pi,t and πi,t = ∆pi,t. The equations become:

0 = Ei,t [c̃i,t − c̃i,t+1 + rt −∆ai,t+1 − πi,t+1] (29)

0 = πi,t−1−(λ(1 + ζγ) + 1) πi,t+β∆Ei,t [πi,t+1]+λ∆c̃i,t+λ (πi,t − ζ∆ai,t + ζ∆di,t)
(30)

5.3.2 Feedback in the Lorenzoni Model

The full information solution to the model characterized by equations (29) and (30)
has no unit roots. But there is a problem: the dispersed information model still
has a unit root in the Euler equation. This unit root occurs because islands take
expected asset returns Ei,t [rt − πi,t+1] as exogenous. This is exactly the same problem
encountered in linearized small open economy models, where additional assumptions
need to be made to introduce a stabilizing force to the Euler equation.

With one unit eigenvalue, the conditions for Theorem 1 are not satisfied. The
operators Θ(L) and Ξ(L) can still be constructed from the recursive equations, but
the entries in Ξ(L) are not square-summable. As a result, ‖Ξ‖ =∞ and Information
Feedback Regularity will not be satisfied.

How does the feedback manifest? Small changes to an island’s information pro-
cess have large effects on the island’s decision-making. Another consequence of this
feedback is small differences in islands’ realized signals can have permanent effects on
island consumption.

If IFR is not satisfied, then there are no signal-stable equilibria (Theorem 3). But
that does not mean that the model does not work. The solution method in Lorenzoni
(2009) converges for some calibrations. In particular, the numerical properties are
known to be sensitive to the calibrated shock variances. This makes sense: in most
dispersed information models, sending some shock variances to zero or infinity recov-
ers full or at least common information. So equilibrium properties should be sensitive
to the calibration. But Information Feedback Regularity does not capture this sensi-
tivity. The variances affect the exogenous signal process SX , while IFR describes the
feedback that generates the endogenous signal SN .

6 Conclusion

This paper introduced a new method for representing and solving a general class of
macroeconomic models with endogenous information. I introduced the Information
Feedback Regularity condition, which is necessary for an equilibrium to be signal-
stable. Signal-stable equilibria are locally unique, and can be approximated arbitrarily
well if they are infinite dimensional. Then, I proved that a signal-stable equilibrium
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must be the globally unique signal-stable equilibrium. The Sufficient Idiosyncrasy
Condition ensures that all equilibria are signal-stable, therefore the condition guar-
antees global uniqueness. To demonstrate these results, I applied the signal operator
approach to a variety of simple examples from the literature.

Endogenous information may prove valuable for many applications. Macroeco-
nomic models with information frictions that previously relied on exogenous noise,
or that made approximations to the information structure, can now be modeled with
fully endogenous signals. Such models can be used to answer questions that were
impossible when information was exogenous. How can a policymaker influence ex-
pectations by affecting endogenous variables? What is the optimal monetary policy
in such an environment when additional frictions and complexities are introduced?
What about fiscal stabilization or financial regulation? A wide range of policies that
affect asset prices, inflation, unemployment, or other endogenous quantities from
which agents might draw information can now be more easily addressed. When
economists begin projects tackling these questions, they can easily evaluate the In-
formation Feedback Regularity of their models, and draw useful conclusions about
equilibrium properties and the behavior of solution algorithms such as Signal Oper-
ator Iteration.
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Keynes, J. M. (1936): The General Theory of Employment, Interest, and Money. Macmil-
lan.

Klein, P. (2000): “Using the generalized Schur form to solve a multivariate linear rational
expectations model,” Journal of Economic Dynamics and Control, 24(10), 1405–1423.

Levine, P., J. Pearlman, S. H. Wright, and B. Yang (2024): “Imperfect Information
and Hidden Dynamics,” .

Lorenzoni, G. (2009): “A Theory of Demand Shocks,” American Economic Review, 99(5),
2050–2084.

Lucas, R. E. (1972): “Expectations and the Neutrality of Money,” Journal of economic
theory, 4(2), 103–124.

Makarov, I., and O. Rytchkov (2012): “Forecasting the forecasts of others: Implica-
tions for asset pricing,” Journal of Economic Theory, 147(3), 941–966.

Melosi, L. (2016): “Signaling Effects of Monetary Policy,” The Review of Economic Stud-
ies.

Morris, S., and H. S. Shin (2002): “Social Value of Public Information,” American
Economic Review, 92(5), 1521–1534.

Nimark, K. (2008): “Dynamic pricing and imperfect common knowledge,” Journal of
Monetary Economics, 55(2), 365–382.

(2017): “Dynamic Higher Order Expectations,” Working Paper.

Rondina, G., and T. Walker (2015): “Dispersed Information and Confounding Dynam-
ics,” Working Paper.

Rondina, G., and T. B. Walker (2021): “Confounding Dynamics,” Journal of Economic
Theory, 196, 105251.

Sargent, T. J. (1991): “Equilibrium with signal extraction from endogenous variables,”
Journal of Economic Dynamics and Control, 15(2), 245–273.

Sims, C. A. (2003): “Implications of rational inattention,” Journal of Monetary Economics,
50(3), 665–690.

Singleton, K. J. (1987): “Asset prices in a time-series model with disparately informed,
competitive traders,” .

38



Strohmer, T. (2002): “Four short stories about Toeplitz matrix calculations,” Linear
Algebra and its Applications, 343-344, 321–344.

Townsend, R. M. (1983): “Forecasting the Forecasts of Others,” Journal of Political
Economy, 91(4), 546–588.

Uhlig, H. (1995): “A toolkit for analyzing nonlinear dynamic stochastic models easily,”
Federal Reserve Bank of Minneapolis Discussion Papers.

Venkateswaran, V. (2014): “Heterogeneous Information and Labor Market Fluctua-
tions,” SSRN Scholarly Paper ID 2687561, Social Science Research Network, Rochester,
NY.

Woodford, M. (2003): “The Imperfect Common Knowledge and the Effects of Monetary
Policy,” in Knowledge, Information and Expectations in Modern Macroeconomics: In
Honor of Edmund S. Phelps, ed. by P. Aghion, R. Frydman, J. Stiglitz, and M. Woodford.

39



A Proofs

This appendix contains the proofs of all Theorems, as well as intermediate results.

A.1 Deriving the Policy Function

To simplify notation, define the matrices Ãk by

Ãk ≡

{
0 k < 0

Q∗(BA1Ak+1 +BA0Ak) k ≥ 0
(31)

with associated lag operator polynomial Ã(L) ≡
∑∞

k=−∞ ÃkL
k. The remaining ma-

trices in the following proof are defined in Section 2.1.
Proof of Theorem 1. The equilibrium conditions (5) must hold for all realizations
of the shocks, so it’s possible to collect terms, restricting the values of the matrices
{Xj}∞j=0. This implies a recursive equation for j ≥ 1:

0 = BX0Xj +BX1Xj+1 +BA0Aj +BA1Aj+1 (32)

Left multiply by Q∗, substitute with Ã, and rearrange to get

T1ZXj+1 = −T0ZXj − Ãj (33)

The recursive relationship can now be separated into a stable recursive equation and
an unstable recursive equation. Let (ZX)C,j and (ZÃ)C,j denote the last nC rows of
(ZX)j and Ãj respectively. Then the unstable recursive equation is

T1,CC(ZX)C,j+1 = −T0,CC(ZX)C,j − ÃC,j (34)

And where (ZX)S,j and ÃS,j denote the corresponding first nS rows, the stable re-
cursive equation is

T1,SS(ZX)S,j+1 + T1,SC(ZX)C,j+1 = −T0,SS(ZX)S,j − T0,SC(ZX)C,j − ÃS,j (35)

Because T−1
0,CCT1,CC has all eigenvalues inside the unit circle, the unstable recursive

equation (34) allows (ZX)C,j to be expressed as

(ZX)C,j = −
∞∑
k=0

(
−T−1

0,CCT1,CC

)k
T−1

0,CCÃC,j+k ∀j ≥ 0 (36)

which in lag operator notation is

(ZX)C(L) =
[
−
(
1 + T−1

0,CCT1,CCL
−1
)−1

T−1
0,CCÃC(L)

]
+
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Similarly, the stable recursive equation (35) implies the sum ∀j > 0

(ZX)S,j =

−
j∑

k=1

(
−T−1

1,SST0,SS

)k−1
T−1

1,SS

(
ÃS,j−k + T0,SC(ZX)C,j−k + T1,SC(ZX)C,j+1−k

)
+
(
−T−1

1,SST0,SS

)j
(ZX)S,0 (37)

which in lag operator notation is

(ZX)S(L) =
(
I + T−1

1,SST0,SSL
)−1(

(ZX)S,0 − T−1
1,SSL

(
ÃS(L) + T0,SC(ZX)C(L) + T1,SC

[
L−1(ZX)C(L)

]
+

))
then use L [L−1(ZX)C ]+ = (ZX)C − (ZX)C,0 to eliminate the annihilation operator

(ZX)S =
(
I + T−1

1,SST0,SSL
)−1(

(ZX)S,0 + T−1
1,SST1,SC(ZX)C,0 − T−1

1,SSLÃS(L)− T−1
1,SS (T1,SC + T0,SCL) (ZX)C(L)

)
Equation (36) determines (ZX)C,j for all j ≥ 0, but equation (37) only determines

(ZX)S,j for j > 0. Instead, (ZX)S,0 is determined by the restriction that nS state
variables are predetermined. To calculate the initial matrix X0, relate it to the
transformed ZX0 by(

(ZX)S,0
(ZX)C,0

)
=

(
ZSS ZSC
ZCS ZCC

)(
XS,0

XC,0

)
where XS,0 are the entries corresponding to the state variables (the first nS entries in
X0) and XC,0 correspond to the controls. The restriction XS,0 = 0 implies

(ZX)C,0 = ZCCXC,0

ZCC is full rank by assumption, so (ZX)S,0 can be found by

(ZX)S,0 = ZSCZ
−1
CC(ZX)C,0 (38)

(ZX)C,0 is the forecast error (ZX)C − L [L−1(ZX)C ]+ so it can be written as

(ZX)C,0 =
[
−
(
1 + T−1

0,CCT1,CCL
−1
)−1

T−1
0,CCÃC

]
+

+L
[
L−1

(
1 + T−1

0,CCT1,CCL
−1
)−1

T−1
0,CCÃC

]
+

(39)
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Equations (36), (37), (38), and (39) can be expressed as a single equation with
lag operator polynomials: I 0 −I

−BS(L)−1
(
ZSCZ

−1
CC + T−1

1,SST1,SC

)
I BS(L)−1T−1

1,SS (T1,SC + T0,SCL)
0 0 I

 (ZX)C,0
(ZX)S
(ZX)C

 =

 −L 0 0
0 −BS(L)−1T−1

1,SSL 0
0 0 I

 0 −L−1BC(L)−1T−1
0,CC

I 0
0 −BC(L)−1T−1

0,CC

 Ã(L)


+

where BS(L) ≡ (I+T−1
1,SST0,SSL) and BC(L) ≡ (I+T−1

0,CCT1,CCL
−1) The left operator

is easily inverted: (ZX)C,0
(ZX)S
(ZX)C

 =

 I 0 I
BS(L)−1

(
ZSCZ

−1
CC + T−1

1,SST1,SC

)
I BS(L)−1

(
ZSCZ

−1
CC − T

−1
1,SST0,SCL

)
0 0 I


 −L 0 0

0 −BS(L)−1T−1
1,SSL 0

0 0 I

 0 −L−1BC(L)−1T−1
0,CC

I 0
0 −BC(L)−1T−1

0,CC

 Ã(L)


+

Select the second and third block rows:

ZX(L) =(
−BS(L)−1

(
ZSCZ

−1
CC + T−1

1,SST1,SC

)
L −BS(L)−1T−1

1,SSL BS(L)−1
(
ZSCZ

−1
CC − T

−1
1,SST0,SCL

)
0 0 I

)
 0 −L−1BC(L)−1T−1

0,CC

I 0
0 −BC(L)−1T−1

0,CC

 Ã(L)


+

and left multiplying by Z∗ yields

X(L) =

Z∗
(
−BS(L)−1

(
ZSCZ

−1
CC + T−1

1,SST1,SC

)
L −BS(L)−1T−1

1,SSL BS(L)−1
(
ZSCZ

−1
CC − T

−1
1,SST0,SCL

)
0 0 I

)
 0 −L−1BC(L)−1T−1

0,CC

I 0
0 −BC(L)−1T−1

0,CC

Q∗QÃ(L)


+

which uses that Z and Q are unitary.
Substituting in Θ(L) and Ξ(L) gives

X(L) = Θ(L)[Ξ(L)QÃ(L)]+

42



and substituting with the definition Ã(L) = [Q∗ (BA1L
−1 +BA0)A(L)]+ gives

X(L) = Θ(L)
[
Ξ(L)

[(
BA1L

−1 +BA0

)
A(L)

]
+

]
+

Ξ(L) has no causal terms beyond χ0, so
[
Ξ(L) [BA1L

−1]+
]

+
= [Ξ(L)BA1L

−1]+, and
eliminating the inner annihilator completes the proof:

X(L) = Θ(L)
[
Ξ(L)

(
BA1L

−1 +BA0

)
A(L)

]
+

A.2 The Signal Space

Lower case variables denote infinite square summable vectors, e.g. yi ∈ `2. Column
vectors yi are indexed by i = 1, ...m; when collected, the m vectors form an ∞×m
block vector y, which is written without a subscript. Upper-case variables denote the
corresponding lower triangular block Toeplitz operator with symbol y, e.g. Y has
block columns {y, Ly, L2y, ...}.

When the blocks are m× n, the lag operator L right-shifts a vector n times. The
operator L−1 is the left-inverse of L, which left-shifts a vector by the length of its
associated block. As usual, Y ∗ denotes the adjoint of Y ; when yi is real (always the
case in this section) y∗i is the vector transposed.

A.2.1 Norms

Several norms are used. First, if the norm of a vector yi is written without subscript,
then it is the usual `2 (Euclidean) vector norm:

Vector Norm of yi: ||yi|| = ||Y ei||

where ei the ith standard basis vector, showing how Y is related to its yi columns.
Second, an additional “signal norm” is necessary to introduce because of the block

structure of the signals’ operator representations:

Definition 2 (Signal Norm) Define the norm ‖Y ‖S of a block Toeplitz operator Y
as

‖Y ‖S =

√√√√ m∑
i=1

‖yi‖2

Let ei denote the ith standard basis column vector; then

‖Y ‖2
S =

m∑
i=1

‖Y ei‖2
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The squared signal norm is the sum of squared norms of the columns that constitute
a block column. Equivalently, the signal norm is the sum of the squared Frobenius
norm of each sub-matrix Yj:

‖Y ‖2
S =

∞∑
j=0

‖Yj‖2
F (40)

When evaluating a vector, it is simply the `2 vector norm.
Third, if the norm of a signal is written without subscript, then it is the operator

norm of the associated Toeplitz operator:

Operator Norm of Y : ||Y || ≡ sup
s s.t. ||s||S=1

||Y s||S

In this paper, the Toeplitz operators map signals to signals. The appropriate vector
space is defined below, but the operator norm is easily calculated because it is equiv-
alent to the `2 → `2 operator norm. When considering the norm of an operator X on
a signal Y , by definition the norm ‖XY ‖S satisfies

‖XY ‖S ≤ ‖X‖‖Y ‖S

A.2.2 Definition of the Vector Space

Definition 3 (Signal Space) Define SmA,mε as the set of mA ×mε lower block tri-
angular operators with finite ‖ · ‖S norm.

SmA,mε is the Banach space of causal signals, with norm ‖ · ‖S as the distance metric.
A property of this space is that it is closed under addition when the blocks are the
same size, and it is closed under multiplication when the block dimensions agree.

A.3 Radius Lemmas

This section proves two lemmas that bound the norms of endogenous signals.

Lemma 1 If Information Feedback Regularity holds, then all fixed points satisfying
Ŝ = B(Ŝ) have signal norms

‖Ŝ‖S ≤ RS

where RS = ‖SX‖S
1−‖GΘΞ(BA1L−1+BA0)‖ .

Proof. By equation (20), a fixed point with Wold representation Ŝ = AW satisfies

Ŝ = SX +GΘ
[
Ξ(BA1L

−1 +BA0)A
]

+
WPG

By the triangle inequality:

‖Ŝ‖S ≤ ‖SX‖S + ‖GΘ
[
Ξ(BA1L

−1 +BA0)A
]

+
WPG‖S
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≤ ‖SX‖S + ‖GΘ
[
Ξ(BA1L

−1 +BA0)A
]

+
W‖S

which uses ‖PG‖S = 1 because PG is a projection. Next, let CWC
′
W = ΣW denote

the Cholesky decomposition of the variance of white noise innovations. As a result,
(C−1

W W )ᵀ is an isometry, because W ᵀ∗W ᵀ = ΣW ,27 which implies

= ‖SX‖S + ‖GΘ
[
Ξ(BA1L

−1 +BA0)A
]

+
CWC

−1
W W‖S

= ‖SX‖S + ‖GΘ
[
Ξ(BA1L

−1 +BA0)A
]

+
CW‖S

because in this case the isometry is a change of basis that does not affect the norm.
CW is a block-diagonal operator so it passes through the annihilator; the inequality
becomes

‖Ŝ‖S ≤ ‖SX‖S + ‖GΘ
[
Ξ(BA1L

−1 +BA0)ACW
]

+
‖S (41)

The signal norm ‖ · ‖S is just the sum of vector norms in the first column block
of an operator. To evaluate the norm in equation (41), let ã denote the first block
column of ACW . The block Toeplitz representation of Ξ(BA1L

−1 +BA0) is
Ξ0 Ξ−1 Ξ−2 Ξ−3 ...
0 Ξ0 Ξ−1 Ξ−2 ...
0 0 Ξ0 Ξ−1 ...
0 0 0 Ξ0 ...
...

...
...

...
. . .




BA0 BA1 0 0 ...

0 BA0 BA1 0 ...
0 0 BA0 BA1 ...
0 0 0 BA0 ...
...

...
...

...
. . .



=


Ξ0BA0 Ξ−1BA0 + Ξ0BA1 Ξ−2BA0 + Ξ1BA1 Ξ−3BA0 + Ξ−2BA1 ...

0 Ξ0BA0 Ξ−1BA0 + Ξ0BA1 Ξ−2BA0 + Ξ1BA1 ...
0 0 Ξ0BA0 Ξ−1BA0 + Ξ0BA1 ...
0 0 0 Ξ0BA0 ...
...

...
...

...
. . .


which is also block Toeplitz because Ξ and BA1L

−1 + BA0 are both upper block
triangular. The product of this block Toeplitz operator and ã gives the first block
column of [Ξ(BA1L

−1 +BA0)ACW ]+. And GΘ is causal (i.e. lower block triangular)
so premultiplying by the block Toeplitz representation of GΘ then gives the first
block column of GΘ [Ξ(BA1L

−1 +BA0)ACW ]+. As a matter of convention, writing
GΘΞ(BA1L

−1 + BA0) followed by any vector implies multiplying the corresponding
block Toeplitz operators (G, Θ, Ξ, and (BA1L

−1 +BA0)) with that vector, thus

‖GΘ
[
Ξ(BA1L

−1 +BA0)ACW
]

+
‖S = ‖GΘΞ(BA1L

−1 +BA0)ã‖S

Continuing the inequality from equation (41):

‖Ŝ‖S ≤ ‖SX‖S + ‖GΘΞ(BA1L
−1 +BA0)ã‖S

27(·)ᵀ denotes the block-transpose, which transposes the blocks of a block-Toeplitz operator.
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≤ ‖SX‖S + ‖GΘΞ(BA1L
−1 +BA0)‖‖ã‖S

by definition of the operator norm ‖GΘΞ(BA1L
−1 +BA0)‖

= ‖SX‖S + ‖GΘΞ(BA1L
−1 +BA0)‖‖S‖S

because ‖ã‖S = ‖ACW‖S = ‖ACWC−1
W W‖S = ‖S‖S.

Then rearrange the inequality ‖Ŝ‖S ≤ ‖SX‖S + ‖GΘΞ(BA1L
−1 +BA0)‖‖Ŝ‖S:

‖Ŝ‖S ≤
‖SX‖S

1− ‖GΘΞ(BA1L−1 +BA0)‖

which is possible if IFR holds so that ‖GΘΞ(BA1L
−1 +BA0)‖ < 1.

Lemma 2 If the Information Feedback Regularity Condition holds, and Ŝ = B(Ŝ) is
a fixed point, then the signal norm of the aggregate component ŜPG is bounded by

‖ŜPG‖S ≤
‖SXPG‖S + ϑI

1− ‖GΘΞ(BA1L−1 +BA0)‖

where ϑI = ‖GΘ‖‖ [Ξ(BA1L
−1 +BA0)SX(I − PG)]+ ‖S, while the signal norm of the

endogenous signal ŜN = GΘ[Ξ(BA1L
−1 +BA0)A]+WPG is bounded by

‖GΘ[Ξ(BA1L
−1 +BA0)A]+WPG‖S ≤ RN

where RN = ‖GΘΞ(BA1L
−1+BA0)‖‖SXPG‖S+ϑI

1−‖GΘΞ(BA1L−1+BA0)‖ .

Proof. A fixed point Ŝ = AW satisfies

Ŝ = SX +GΘ [ζA]+WPG

where Ξ(BA1L
−1 + BA0) = ζ. where PŜ denotes projection onto current and past Ŝ

signals. [ζA]+W is the projection of the noncausal signals ζŜ onto current and past
Ŝ. To write this projection step as a linear operator, it is necessary to transpose the
blocks of the signals without transposing the whole operator, as described in Appendix
A.5.1. Ŝᵀ indicates this “block transpose”; the operator is still lower triangular block
Toeplitz, but each block is transposed. This approach is useful because Lemma 9
can be applied to bound the effects of certain non-causal operators. As in Appendix
A.5.2, PŜ = Ŝᵀ(Ŝᵀ∗Ŝᵀ)−1Ŝᵀ∗ denotes the projection onto the columns of Ŝᵀ.

With this representation, the fixed point satisfies28

Ŝ = SX +GΘ
(
PŜ[(ζŜ)ᵀ]+

)ᵀ
PG

28Note that (ζŜ)ᵀ 6= Ŝᵀζᵀ in general; this separation only holds with equality if ζ is causal.
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and PG is a projection, so the aggregate component of any fixed point satisfies

ŜPG = SXPG +GΘ
(
PŜ[(ζŜ)ᵀ]+

)ᵀ
PG (42)

Take the norm and apply the triangle inequality:

‖ŜPG‖S ≤ ‖SXPG‖S+‖GΘ
(
PŜ[(ζŜ)ᵀ]+

)ᵀ
PG‖S ≤ ‖SXPG‖S+‖GΘ

(
PŜ[(ζŜ)ᵀ]+

)ᵀ
‖S

The second inequality holds because PG is a projection with norm ‖PG‖ = 1.
By Lemma 9, the inequality becomes

‖ŜPG‖S ≤ ‖SXPG‖S + ‖PŜ‖
(
‖GΘζ‖‖ŜPG‖S + ϑI

)
PŜ is also a projection, so ‖PŜ‖ = 1. If IFR holds, ‖GΘζ‖ < 1, so the inequality can
be rearranged to

‖ŜPG‖S ≤
‖SXPG‖S + ϑI

1− ‖GΘζ‖
The definition of ζ proves the first result.

The latter term in equation (42) is the endogenous component; take the signal
norm:

‖GΘ [ζA]+WPG‖S = ‖GΘ
(
PŜ[(ζŜ)ᵀ]+

)ᵀ
PG‖S

≤ ‖GΘ
(
PŜ[(ζŜ)ᵀ]+

)ᵀ
‖S

because PG is a projection. Apply Lemma 9:

≤ ‖PŜ‖
(
‖GΘζ‖‖ŜPG‖S + ϑI

)
= ‖GΘζ‖‖ŜPG‖S + ϑI

Then use the first result that ‖ŜPG‖S ≤ ‖SXPG‖S+ϑI
1−‖GΘζ‖ to bound

‖GΘ [ζA]+WPG‖S ≤ ‖GΘζ‖‖SXPG‖S + ϑI
1− ‖GΘζ‖

+ ϑI =
‖GΘζ‖‖SXPG‖S + ϑI

1− ‖GΘζ‖

Again, the definition of ζ proves the second result.

A.4 Convergence to an Infinite-Order Fixed Point

Towards the proof of Theorem 2, I next prove that the algorithm Bτ approximates B
arbitrarily well for large τ

Lemma 3 Bτ converges to B pointwise, i.e.

lim
τ→∞
Bτ (S) = B(S) ∀S ∈ SmA,mε
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Proof. Consider any S ∈ SmA,mε

‖B(S)− Bτ (S)‖2
S = ‖(SX +GXWPG)(I − Pτ )‖2

S

= ‖B(S)(I − Pτ )‖2
S

=
∞∑
j=r

‖(B(S))j‖2
S

where (B(S))j denotes the jth block of B(S).
B(S) is square summable, so for any ε > 0, there exists aK such that

∑∞
j=K ‖(B(S))j‖2

S <

ε2. Therefore limτ→∞ Bτ (S) = B(S) and Bτ → B pointwise.
Proof of Theorem 2. Lemma 3 says Bτ → B pointwise, so for any ε

2
> 0, there

exists a K1 s.t.

‖Bτ (Sτ )− B(Sτ )‖ <
ε

2
∀r ≥ K1

B is continuous and Ŝτ → Ŝ, so for any ε
2
> 0, there exists a K2 s.t.

‖B(Ŝτ )− B(Ŝ)‖ < ε

2
∀r ≥ K2

Therefore:

‖Bτ (Ŝτ )− B(Ŝτ )‖+ ‖B(Ŝτ )− B(Ŝ)‖ < ε ∀r ≥ max(K1, K2)

Then by the triangle inequality:

‖Bτ (Ŝτ )− B(Ŝ)‖ < ε ∀r ≥ max(K1, K2)

so by definition
lim
τ→∞
Bτ (Ŝτ ) = B(Ŝ)

Then substitute with the fixed points, followed by their limit:

lim
τ→∞

Ŝτ = B(Ŝ)

Ŝ = B(Ŝ)

A.5 The Norm of the Fréchet Derivative

This section introduces some notation useful for characterizing the norm of the Fréchet
derivative, states an intermediate lemma, and finally derives the expression.
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A.5.1 Additional Notation

Toeplitz operators have an associated Hankel operator. The block Toeplitz operator
Y constructed from the block column y has block columns y, Ly, L2y, .... I denote
the associated Hankel operator H(y), which has block columns y, L−1y, L−2y, ..., and
thus is block-symmetric. If H(Y ) is written in terms of a non-Toeplitz operator Y ,
it is implied that it takes the first block column of Y as its argument.

Some operations are made more difficult by the fact that signals are block Toeplitz
operators, rather than regular Toeplitz operators which would otherwise commute for
causal signals. One method to resolve this is to permute the blocks into vectors, and
apply Kronecker products of operators; this requires some further notation. bvec(·)
vectorizes each block of an (m×n)-block operator, producing a (mn×1)-block Toeplitz
operator, by stacking sub-block columns. For example, bvec(Y ) is a block Toeplitz
operator, and bvec(Y )e1 is its first column, which encodes all of the information of
a lower triangular block Toeplitz operator Y into a vector. Therefore the signal and
vector norms are related by

‖Y ‖S = ‖bvec(Y )e1‖

which immediately follows from Definition 2.
Sometimes it is necessary to transpose the blocks of an operator without trans-

posing the entire operator. The block transpose of an operator Y is denoted by
Y ᵀ.

Let LY and RY denote left and right multiplication of a vectorized operator, such
that the original operator is left or right multiplied by Y , respectively. In other words,
for block m× n operator Y and scalar k, the blocks of Lk

Y and Rk
Y are given by:

Lk
Y,ij = Ik ⊗ Yij Rk

Y,i,j = Y ∗i,j ⊗ Ik (43)

then conformable operators X (with k×m blocks) and Y (with m×n blocks) satisfy

bvec(XY ) = Ln
Xbvec(Y )

Using R requires more conditions than L. One special case is where X and Y are
conformable lower block triangular Toeplitz operators:

bvec(XY ) = Rk
Y bvec(X)

A second special case is where H and Y are conformable Hankel and lower block
triangular Toeplitz operators, respectively:

bvec(HY ) = Rk
Y ᵀ∗bvec(H)

Hankel and upper triangular Toeplitz operators have a useful relationship in the
case where x and y are ordinary vectors: X∗y = H(y)x. Property 2 generalizes this
to the block case.

49



Property 2 For m× k block vector x and m× n block vector y:

bvec(X∗y) = %k,nbvec(H(yᵀ)x)

where %k,n is the vec-permutation matrix29 for k × n vectorized matrices.

A.5.2 A Lemma for Characterizing the Fréchet Derivative

Consider a lower block triangular signal Toeplitz operator S ∈ SmA,mε , and a deviation
S∆ ∈ SmA,mε . Denote the difference D ≡ S∆ − S. Let PS ≡ Sᵀ(Sᵀ∗Sᵀ)−1Sᵀ∗ denote
the projection onto the columns of Sᵀ, let MS ≡ I−PS denote the residual projection
and let S−ᵀL ≡ (Sᵀ∗Sᵀ)−1Sᵀ∗ denote the left inverse of the signal Toeplitz operator Sᵀ.

Lemma 4 If Φ is a conformable non-causal block Toeplitz operator, then for i ≤ mε:

(PS∆ − PS)[(ΦS)ᵀ]+ei = MSD
ᵀS−ᵀL [(ΦS)ᵀ]+ei + S−ᵀ∗L Dᵀ∗MS[(ΦS)ᵀ]+ei + o(‖D‖S)

(44)

Proof.

(PS∆−PS)[(ΦS)ᵀ]+ei = (Sᵀ+Dᵀ)((Sᵀ+Dᵀ)∗(Sᵀ+Dᵀ))−1(Sᵀ+Dᵀ)∗[(ΦS)ᵀ]+ei−PS[(ΦS)ᵀ]+ei

= Dᵀ(Sᵀ∗Sᵀ)−1S∗[(ΦS)ᵀ]+ei + Sᵀ(Sᵀ∗Sᵀ)−1Dᵀ∗[(ΦS)ᵀ]+ei...

+ Sᵀ((Sᵀ +Dᵀ)∗(Sᵀ +Dᵀ))−1Sᵀ∗[(ΦS)ᵀ]+ei − PS[(ΦS)ᵀ]+ei + o(‖D‖S)

The o(‖D‖S) term here collects all Dᵀ∗Dᵀ and DᵀDᵀ∗ terms. Substitute in S−ᵀL ≡
(Sᵀ∗Sᵀ)−1Sᵀ∗ to simplify notation:

= DᵀS−ᵀL [(ΦS)ᵀ]+ei + S−ᵀ∗L Dᵀ∗[(ΦS)ᵀ]+ei...

+ Sᵀ((Sᵀ +Dᵀ)∗(Sᵀ +Dᵀ))−1Sᵀ∗[(ΦS)ᵀ]+ei − PS[(ΦS)ᵀ]+ei + o(‖D‖S)

= DᵀS−ᵀL [(ΦS)ᵀ]+ei + S−ᵀ∗L Dᵀ∗[(ΦS)ᵀ]+ei...

+ Sᵀ(Sᵀ∗Sᵀ +Dᵀ∗Sᵀ + Sᵀ∗Dᵀ)−1Sᵀ∗[(ΦS)ᵀ]+ei − PS[(ΦS)ᵀ]+ei + o(‖D‖S)

Using PS = Sᵀ(Sᵀ∗Sᵀ)−1Sᵀ∗:

= DᵀS−ᵀL [(ΦS)ᵀ]+ei + S−ᵀ∗L Dᵀ∗[(ΦS)ᵀ]+ei...

+ Sᵀ(Sᵀ∗Sᵀ +Dᵀ∗Sᵀ + Sᵀ∗Dᵀ)−1Sᵀ∗[(ΦS)ᵀ]+ei...

−Sᵀ(Sᵀ∗Sᵀ+Dᵀ∗Sᵀ+Sᵀ∗Dᵀ)−1(Sᵀ∗Sᵀ+Dᵀ∗Sᵀ+Sᵀ∗Dᵀ)(Sᵀ∗Sᵀ)−1Sᵀ∗[(ΦS)ᵀ]+ei+o(‖D‖S)

29Henderson and Searle (1981)
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= DᵀS−ᵀL [(ΦS)ᵀ]+ei + S−ᵀ∗L Dᵀ∗[(ΦS)ᵀ]+ei...

+Sᵀ(Sᵀ∗Sᵀ+Dᵀ∗Sᵀ+Sᵀ∗Dᵀ)−1
(
I − (Sᵀ∗Sᵀ +Dᵀ∗Sᵀ + Sᵀ∗Dᵀ)(Sᵀ∗Sᵀ)−1

)
Sᵀ∗[(ΦS)ᵀ]+ei+o(‖D‖S)

= DᵀS−ᵀL [(ΦS)ᵀ]+ei + S−ᵀ∗L Dᵀ∗[(ΦS)ᵀ]+ei...

−Sᵀ(Sᵀ∗Sᵀ+Dᵀ∗Sᵀ+Sᵀ∗Dᵀ)−1
(
Dᵀ∗Sᵀ(Sᵀ∗Sᵀ)−1 + Sᵀ∗Dᵀ(Sᵀ∗Sᵀ)−1

)
Sᵀ∗[(ΦS)ᵀ]+ei+o(‖D‖S)

Subsume some additional terms into o(‖D‖S):

= DᵀS−ᵀL [(ΦS)ᵀ]+ei + S−ᵀ∗L Dᵀ∗[(ΦS)ᵀ]+ei...

− Sᵀ(Sᵀ∗Sᵀ)−1
(
Dᵀ∗Sᵀ(Sᵀ∗Sᵀ)−1 + Sᵀ∗Dᵀ(Sᵀ∗Sᵀ)−1

)
Sᵀ∗[(ΦS)ᵀ]+ei + o(‖D‖S)

= DᵀS−ᵀL [(ΦS)ᵀ]+ei + S−ᵀ∗L Dᵀ∗[(ΦS)ᵀ]+ei...

− Sᵀ(Sᵀ∗Sᵀ)−1Dᵀ∗PS[(ΦS)ᵀ]+ei − PSDᵀ(Sᵀ∗Sᵀ)−1Sᵀ∗[(ΦS)ᵀ]+ei + o(‖D‖S)

Substitute MS ≡ I − PS and S−ᵀL ≡ (Sᵀ∗Sᵀ)−1Sᵀ∗:

= DᵀS−ᵀL [(ΦS)ᵀ]+ei + S−ᵀ∗L Dᵀ∗[(ΦS)ᵀ]+ei...

− S−ᵀ∗L Dᵀ∗PS[(ΦS)ᵀ]+ei − PSDᵀS−ᵀL [(ΦS)ᵀ]+ei + o(‖D‖S)

= MSD
ᵀS−ᵀL [(ΦS)ᵀ]+ei + S−ᵀ∗L Dᵀ∗MS[(ΦS)ᵀ]+ei + o(‖D‖S)

A.5.3 The Fréchet Derivative

To make the equations in the Theorem 8 proof more manageable, define

ζ ≡ Ξ(BA1L
−1 +BA0) (45)

and define nζ ≡ n+ ns, the number of row dimensions in the blocks of Ξ.
To simplify the norm itself, I introduce subspace coefficients QPS and QMS

.

Definition 4 For nonzero S ∈ SmA,mε, define

QPS ≡ Rmε
ζᵀ

QMS
≡ Rmε

S−ᵀ
L [(ζS)ᵀ]+

+ L
nζ

S−ᵀ∗
L

%nζ ,mALmA
H((MS [(ζS)ᵀ]+)ᵀ)

Using this notation, Theorem 8 gives the explicit matrix representation of the
Fréchet derivative.
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Theorem 8 When a signal S is represented in the vectorized form bvec(Sᵀ)e1, the
Fréchet derivative of B(S) has a matrix representation given by

DB(S) = LmA
PG

Rmε
(GΘ)ᵀQPSLPS + LmA

PG
Rmε

(GΘ)ᵀQMS
LMS

(46)

Proof. Consider a signal perturbation D ≡ S∆ − S. The perturbed difference
B(S∆)− B(S) is given by

B(S∆)− B(S) = GΘ
(
[ζA∆]+W

∆ − [ζA]+W
)
PG (47)

I will first characterize the interior term [ζA∆]+W
∆ − [ζA]+W .

[ζA]+W is the projection of the noncausal signals ζAW = ζS onto current and
past W , or equivalently onto current and past S. The block structure of the signals
requires some additional care to ensure conformability: in order to project columns
of ζS onto the space spanned by lags of S, the blocks must be transposed first. In
other words, the columns of the block-transposed operator ([ζA]+W )ᵀei are given by
the projection of [(ζS)ᵀ]+ei for each i ≤ m onto Sᵀ.30 The ith column of the term
[ζA∆]+W

∆ − [ζA]+W for each i ≤ m becomes:

([ζA∆]+W
∆ − [ζA]+W )ᵀei = PS∆ [(ζS∆)ᵀ]+ei − PS[(ζS)ᵀ]+ei

= (PS∆ − PS)[(ζS)ᵀ]+ei + PS[(ζD)ᵀ]+ei + o(‖D‖S)

= MSD
ᵀS−ᵀL [(ζS)ᵀ]+ei + S−ᵀ∗L Dᵀ∗MS[(ζS)ᵀ]+ei + PS[(ζD)ᵀ]+ei + o(‖D‖S)

by Lemma 4. Block vectorize:

bvec(([ζA∆]+W
∆ − [ζA]+W )ᵀ)e1 =

bvec(MSD
ᵀS−

ᵀ

L [(ζS)ᵀ]+)e1+bvec(S−ᵀ∗L Dᵀ∗MS[(ζS)ᵀ]+)e1+bvec(PS[(ζD)ᵀ]+)e1+o(‖D‖S)

The vector e1 selects the first column, making the [·]+ operators redundant on the
right-hand side because S and D are lower triangular:

bvec(([ζA∆]+W
∆ − [ζA]+W )ᵀ)e1 =

bvec(MSD
ᵀS−

ᵀ

L (ζS)ᵀ)e1 + bvec(S−ᵀ∗L Dᵀ∗MS(ζS)ᵀ)e1 + bvec(PS(ζD)ᵀ)e1 + o(‖D‖S)

30These block transposes are necessary because the signals are encoded in the columns of the
operator S, but each column corresponds to a single shock and multiple signals. Forecasters do
not observe individual shocks; they observe individual signals. Forecasting is projecting a single
signal onto lags of itself and other signals. So columns of S cannot directly be projected to recover
the forecasts. However, columns must be used for projection because the rows of S never contain
all of the block entries of S, except in the limit. Therefore the blocks must be transposed so that
columns of S correspond to individual signals rather than shocks. These transposes could be avoided
by treating causal operators as upper triangular rather than lower triangular (as was the case in
earlier versions of the paper) or by having shocks appear on the left-hand side, but this creates more
burdensome notation elsewhere.
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Separate ζ into the lower triangular (causal) term ζC and the strictly upper triangular
(noncausal) term ζNC so that ζ = ζC + ζNC :

= bvec(MSD
ᵀS−

ᵀ

L (ζS)ᵀ)e1 + bvec(S−ᵀ∗L Dᵀ∗MS(ζS)ᵀ)e1

+ bvec(PS(ζCD)ᵀ)e1 + bvec(PS(ζNCD)ᵀ)e1 + o(‖D‖S)

Separating the causal and non-causal components is useful to take advantage of
two properties. First, the causal components commute with block transposes, i.e.
(ζCD)ᵀ = DᵀζᵀC . Second, the non-causal component satisfies bvec(PS(ζNCD)ᵀ)e1 =
bvec(PSH(PSD

ᵀ)ζ∗NC)e1

= bvec(MSD
ᵀS−

ᵀ

L (ζS)ᵀ)e1 + bvec(S−ᵀ∗L Dᵀ∗MS(ζS)ᵀ)e1

+ bvec(PSD
ᵀζᵀC)e1 + bvec(PSH(PSD

ᵀ)ζ∗NC)e1 + o(‖D‖S)

= Rmε
S−ᵀ
L [(ζS)ᵀ]+

bvec(MSD
ᵀ)e1 + L

nζ

S−ᵀ∗
L

bvec(Dᵀ∗MS[(ζS)ᵀ]+)e1

+ Rmε
ζᵀC
bvec(PSD

ᵀ)e1 + Rmε
ζᵀNC

bvec(PSH(PSD
ᵀ))e1 + o(‖D‖S)

= Rmε
S−ᵀ
L [(ζS)ᵀ]+

bvec(MSD
ᵀ)e1 + L

nζ

S−ᵀ∗
L

bvec(Dᵀ∗MS[(ζS)ᵀ]+)e1

+ Rmε
ζᵀC
bvec(PSD

ᵀ)e1 + Rmε
ζᵀNC

bvec(PSD
ᵀ)e1 + o(‖D‖S)

= Rmε
S−ᵀ
L [(ζS)ᵀ]+

bvec(MSD
ᵀ)e1+L

nζ

S−ᵀ∗
L

bvec(Dᵀ∗MS[(ζS)ᵀ]+)e1+Rmε
ζᵀ bvec(PSD

ᵀ)e1+o(‖D‖S)

Apply Property 2:

= Rmε
S−ᵀ
L [(ζS)ᵀ]+

bvec(MSD
ᵀ)e1+L

nζ

S−ᵀ∗
L

%nζ ,mAbvec(H((MS[(ζS)ᵀ]+)ᵀ)Dᵀ)e1+Rmε
ζᵀ bvec(PSD

ᵀ)e1+o(‖D‖S)

and because MS is idempotent:

= Rmε
S−ᵀ
L [(ζS)ᵀ]+

bvec(MSD
ᵀ)e1+L

nζ

S−ᵀ∗
L

%nζ ,mALmA
H((MS [(ζS)ᵀ]+)ᵀ)bvec(MSD

ᵀ)e1+Rmε
ζᵀ bvec(PSD

ᵀ)e1+o(‖D‖S)

(48)
Collecting coefficients on bvec (PSD

ᵀ) e1 and bvec (MSD
ᵀ) e1 and using the nota-

tion from Definition 4 gives

bvec
((

[ζA∆]+W
∆ − [ζA]+W

)ᵀ)
e1 = QPSbvec (PSD

ᵀ) e1+QMS
bvec (MSD

ᵀ) e1+o(‖D‖S)

Now plug this characterization of [ζA∆]+W
∆ − [ζA]+W back into Equation (47)

and block vectorize:

bvec
((
GΘ

(
[ζA∆]+W

∆ − [ζA]+W
)
PG
)ᵀ)

e1

= LmA
PG

Rmε
(GΘ)ᵀQPSbvec (PSD

ᵀ) e1 + LmA
PG

Rmε
(GΘ)ᵀQMS

bvec (MSD
ᵀ) e1 + o(‖D‖S) (49)
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The operators PS and MS project onto orthogonally complementary spaces, spanned
by – or residual to – the columns of Sᵀ, respectively. The vector bvec (Dᵀ) e1 is the
sum of orthogonal components bvec (PSD

ᵀ) e1 = LPSbvec (Dᵀ) and bvec (MSD
ᵀ) e1 =

LMS
bvec (Dᵀ). Thus equation (49) becomes

bvec
((
GΘ

(
[ζA∆]+W

∆ − [ζA]+W
)
PG
)ᵀ)

e1

=
(
LmA
PG

Rmε
(GΘ)ᵀQPSLPS + LmA

PG
Rmε

(GΘ)ᵀQMS
LMS

)
bvec (Dᵀ) e1 + o(‖D‖S)

and taking the limit of
bvec((GΘ([ζA∆]+W∆−[ζA]+W)PG)

ᵀ
)e1

‖D‖S
as ‖D‖S → 0 gives the Fréchet

derivative.
Theorem 8 gives the matrix representation of the Fréchet derivative. Its norm can

be computed directly; Appendix C.6 describes how to do so. But first, corollary 2
gives a theoretical property.

Corollary 2 The norm of the Fréchet derivative satisfies

‖DB(S)‖ =
√
‖LmA

PG
Rmε

(GΘ)ᵀQPSLPS‖2 + ‖LmA
PG

Rmε
(GΘ)ᵀQMS

LMS
‖2

Proof. By Theorem 8, the norm of the Fréchet derivative is

‖DB(S)‖ = ‖LmA
PG

Rmε
(GΘ)ᵀQPSLPS + LmA

PG
Rmε

(GΘ)ᵀQMS
LMS
‖

By definition, the operator norm is

= sup
D s.t. ||D||S=1

‖LmA
PG

Rmε
(GΘ)ᵀQPSLPSD + LmA

PG
Rmε

(GΘ)ᵀQMS
LMS

D‖

The operators LmA
PG

Rmε
(GΘ)ᵀQPSLPS and LmA

PG
Rmε

(GΘ)ᵀQMS
LMS

act on orthogonal sub-
spaces, spanned by current and past S and orthogonal to it, respectively. Decompose
the vector D into these two components:

D = DS +D⊥S

The operator norm becomes

‖DB(S)‖ = sup
D s.t. ||DS+D⊥S ||S=1

‖LmA
PG

Rmε
(GΘ)ᵀQPSLPSDS + LmA

PG
Rmε

(GΘ)ᵀQMS
LMS

D⊥S‖

DS and D⊥S are orthogonal by construction, so by Lemma 10 the operator norm
is

‖DB(S)‖ =
√
‖LmA

PG
Rmε

(GΘ)ᵀQPSLPS‖2 + ‖LmA
PG

Rmε
(GΘ)ᵀQMS

LMS
‖2
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A.6 Proofs of Characteristics of Stable Equilibria

First, the following Lemma is helpful for proving Theorem 3:

Lemma 5 If all fixed points of a model contain aggregate signals such that for any
fixed point signal vector Ŝ there is an entry Ŝi satisfying ŜiPG = Ŝi, then for any
n ≥ 1 the norm of the information feedback operator GΘΞ(BA1L

−1 + BA0) and the
component of the Fréchet derivative LmA

PG
Rmε

(GΘ)ᵀR
mε
ζᵀ LmA

PS
at a fixed point Ŝ satisfy

‖
(
GΘΞ(BA1L

−1 +BA0)
)n ‖ = ‖

(
LmA
PG

Rmε
(GΘ)ᵀR

mε
ζᵀ LmA

PS

)n
‖ (50)

Proof. For any n ≥ 1, consider a signal process Y with unit norm satisfying

Y = arg max
‖Y ‖s=1

‖
(
GΘΞ(BA1L

−1 +BA0)
)n
Y ‖s

then we have by definition of the operator norm

‖
(
GΘΞ(BA1L

−1 +BA0)
)n ‖ = ‖

(
GΘΞ(BA1L

−1 +BA0)
)n
Y ‖S

Consider a single aggregate signal SG that is generated only by aggregate shocks, i.e.
SGPG = SG. By assumption, such an SG is contained in the rows of any fixed point
signal Ŝ. Denote the Wold decomposition of the aggregate signal by SG = AGWG

where AG is causally invertible and WG has variance σ2
WG

. WG is white noise, so its
autocovariance operator is diagonal: W ∗

GWG = σ2
WG
I, thus σ−1

WG
WG is an isometry.

Accordingly, rewriting the operator in terms of the basis σ−1
WG
WG does not affect its

norm:
= ‖

(
GΘΞ(BA1L

−1 +BA0)
)n
Y σ−1

WG
WG‖S

= ‖
(
GΘΞ(BA1L

−1 +BA0)
)n
Y σ−1

WG
A−1
G SG‖S

= ‖
(
GΘΞ(BA1L

−1 +BA0)
)n
Ỹ ‖S (51)

for the unit norm vector Ỹ ≡ Y σ−1
WG
A−1
G SG. Ỹ is a mA × mε block process that

is spanned by current and past signals, and aggregate shocks. Block vectorizing
(Appendix A.5.1) preserves the norm:

= ‖bvec
((
GΘΞ(BA1L

−1 +BA0)
)n
Ỹ
)
‖

as does block transposing:

= ‖bvec
(((

GΘΞ(BA1L
−1 +BA0)

)n
Ỹ
)ᵀ)
‖

= ‖
(
Rmε

(GΘ)ᵀR
mε
ζᵀ

)n
bvec(Ỹ ᵀ)‖
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which implies

‖
(
GΘΞ(BA1L

−1 +BA0)
)n ‖ = ‖

(
Rmε

(GΘ)ᵀQPS

)n
bvec(Ỹ ᵀ)‖ (52)

per equation (45) and definition 4. By construction, Ỹ is spanned by current and
past aggregate signals, so that bvec(Ỹ ᵀ) = LmA

PS
bvec(Ỹ ᵀ) = LmA

PG
LmA
PS
bvec(Ỹ ᵀ). The

LmA
PG

operator commutes with the R operators in this equation, so:

Rmε
(GΘ)ᵀQPSbvec(Ỹ

ᵀ) = LmA
PG

Rmε
(GΘ)ᵀQPSL

mA
PS
bvec(Ỹ ᵀ)

Applying this relationship repeatedly, equation (52) becomes:

‖
(
GΘΞ(BA1L

−1 +BA0)
)n ‖ = ‖

(
LmA
PG

Rmε
(GΘ)ᵀQPSL

mA
PS

)n
bvec(Ỹ ᵀ)‖ (53)

The initial assumption on Y implied that Ỹ maximizes (51) (subject to ‖Ỹ ‖S = 1)
and thus also (52) and (53). Then by the definition of the operator norm:

‖
(
GΘΞ(BA1L

−1 +BA0)
)n ‖ = ‖

(
LmA
PG

Rmε
(GΘ)ᵀR

mε
ζᵀ LmA

PS

)n
‖

Proof of Theorem 3.
Consider the operator norm of the Fréchet derivative:

‖DB(Ŝ)‖ = ‖DB(Ŝ)(PŜ +MŜ)‖

where PŜ denotes the projection onto the subspace SPŜ spanned by current and past

signals Ŝ, and MŜ = I − PŜ is the projection onto the orthogonal subspace SMŜ
.

From the operator norm definition, consider each term:

‖DB(Ŝ)PŜ‖ = sup
yŜ

‖DB(Ŝ)PŜyŜ‖S
‖yŜ‖S

‖DB(Ŝ)MŜ‖ = sup
y⊥Ŝ

‖DB(Ŝ)MŜy⊥Ŝ‖S
‖y⊥Ŝ‖S

The signals yŜ ∈ SPŜ and y⊥Ŝ ∈ SMŜ
maximizing these norms are orthogonal; there-

fore, the unit signal y = yŜ + y⊥Ŝ maximizing ‖DB(Ŝ)y‖S is a linear combination

satisfying ‖yŜ‖2
S + ‖y⊥Ŝ‖2

S = 1. Maximizing ‖DB(Ŝ)PŜyŜ + DB(Ŝ)MŜy⊥Ŝ‖S subject
to this constraint implies the operator norm satisfies

‖DB(Ŝ)‖ =

√
‖DB(Ŝ)PŜ‖2 + ‖DB(Ŝ)MŜ‖2 ≥ ‖DB(Ŝ)PŜ‖

Theorem 8 gives the matrix representation for the Fréchet derivative acting on SPŜ
as LmA

PG
Rmε

(GΘ)ᵀQPŜ
LPŜ

. Therefore

‖DB(Ŝ)‖ ≥ ‖LmA
PG

Rmε
(GΘ)ᵀQPŜ

LPŜ
‖
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Apply Lemma 5, letting n = 1; the operator norms satisfy

‖GΘΞ(BA1L
−1 +BA0)‖ = ‖LmA

PG
Rmε

(GΘ)ᵀR
mε
ζᵀ LmA

PS
‖

Thus the IFR condition (‖GΘΞ(BA1L
−1 + BA0)‖ < 1) is necessary for ‖DB(Ŝ)‖ < 1

to hold at a fixed point, which by Property 1 is true if and only if the fixed point is
signal-stable.

Definition 5 A fixed point Ŝ is called locally unique if there exists a neighborhood
N(S) around S such that Ŝ is the only fixed point in N(S).

Proof of Theorem 4. The Fréchet derivative is continuous everywhere in SmA,mε
except at zero, where it is undefined. So if ‖DB(Ŝ)‖ < 1 then there exists a ball b(Ŝ)
around Ŝ such that ‖DB(S)‖ < 1 for all S ∈ b(Ŝ). Therefore B is a contraction on
b(Ŝ) (Kantorovich and Akilov, 1959, p. 661).31

B is also a self-map on b(Ŝ). To see why, consider any S ∈ b(Ŝ). ‖BS − BŜ‖S <
‖S − Ŝ‖S because B is a contraction on b(Ŝ). Ŝ is a fixed point satisfying BŜ = Ŝ,
so ‖BS − Ŝ‖ < ‖S − Ŝ‖S. Therefore BS is in the ball b(Ŝ).

Finally, B is a self-map and a contraction on the ball b(Ŝ), therefore the Banach
fixed point theorem implies that Ŝ is the unique fixed point in b(Ŝ).
Proof of Corollary 1. A ball b(Ŝ) such that ‖DB(S)‖ < 1 ∀S ∈ b(Ŝ) exists because
DB as given by Theorem 8 is continuous everywhere that ‖DB‖ is finite except 0, and
‖DB(Ŝ)‖ < 1 because Ŝ is signal-stable. B is a contraction mapping on any such
ball b(Ŝ) with Lipschitz constant maxS∈b(Ŝ) ‖DB(S)‖ < 1, therefore by the Banach

Contraction Mapping Theorem, BkS0 converges to Ŝ.
To prove Theorem 5, it is helpful to use the following property of local homeo-

morphisms (Cartan, 1971, Theorem 4.4.1):

Property 3 Let B(a, r) be the open ball with radius r around point a in a Banach
space E, and let f : B(a, r)→ E be a continuous mapping such that the mapping

ϕ(x) ≡ x− f(x)

is a contraction (i.e. it has the k-Lipschitz property for some constant k < 1.) Let
f(a) = b. Then there exists an open set V ⊂ B(a, r) with a ∈ V such that f is a
homeomorphism of V onto the open ball B(b, (1− k)r), and the inverse mapping

g = f−1 : B(b, (1− k)r)→ B(a, r)

has the 1
1−k -Lipschitz property.

31This property is reported in English in Holtzman (1968).
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Proof of Theorem 5. Ŝ 6= 0 is signal-stable, so 1 > ‖DB(Ŝ)‖. As in the Proof
of Theorem 4, continuity of the norm ‖DB‖ away from zero implies there exists some
ball b(Ŝ, r∗) with radius r∗ such that B is a contraction on b(Ŝ, r∗) for any Lipschitz
coefficient kB ∈ (‖DB(Ŝ)‖, 1), and ‖DB(S)‖ < 1 for all S ∈ b(Ŝ, r∗). The truncation
operation in Bτ implies ‖DB(S)‖ ≥ ‖DBτ (S)‖ for all non-zero S ∈ SmA,mε , so Bτ is

also a contraction on any ball b(Ŝ, r) with r ≤ r∗.
Per Lemma 3, for any r there exists a K such that for any τ > K

‖Bτ (Ŝ)− B(Ŝ)‖S < (1− kB)r

Define Cτ ≡ I − Bτ and C ≡ I − B. It must also be the case that:

‖Cτ (Ŝ)− C(Ŝ)‖S < (1− kB)r

Property 3 implies that if r ≤ r∗, there exists a homeomorphism gτ : Bτ (Cτ (Ŝ), (1−
kB)r)→ Bτ (Ŝ, r). Ŝ is a fixed point of B, so C(Ŝ) = 0. Thus 0 ∈ Bτ (Cτ (Ŝ), (1−kB)r)
and gτ (0) ∈ Bτ (Ŝ, r), so there exists a fixed point Ŝτ = Bτ (Ŝτ ) such that ‖Ŝτ − Ŝ‖S <
r. Ŝτ must be signal-stable because Ŝτ ∈ b(Ŝ, r) implies ‖DBτ (Ŝ)‖ < 1. This proves
there exists a sequence of signal-stable fixed points Ŝτ such that limτ→∞ Ŝτ = Ŝ.

A.7 Stable Uniqueness

Proving Theorem 6 requires some notation and intermediate results.
First, I define a set which includes all signal-stable equilibrium fixed points. Let

Y denote the bounded set of mA×mε-block signals with S-norm < RS around which
I − B is signal-stable:

Y ≡ {S ∈ Smε,mA : ‖S‖S < RS, ‖DB(S)‖ < 1}

where RS = ‖SX‖S
1−‖GΘΞ(BA1L−1+BA0)‖ .

Additionally, let Yτ denote the subset of Y in the image of Pτ , i.e. the subset of
signals truncated at order τ or less.

Lemma 6 If a signal with Wold representation S = AW has a matrix (i.e. block
diagonal) forecast error operator W , and if Information Feedback Regularity holds,
then ‖DB(S)‖ < 1

Proof. The operator B(S) is given by

B(S) = SX +GΘ[Ξ(BA1L
−1 +BA0)A]+WPG

If W is a matrix (i.e. block diagonal operator) then it commutes with the annihilation
operator:

= SX +GΘ[Ξ(BA1L
−1 +BA0)AWPG]+
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= SX +GΘ[Ξ(BA1L
−1 +BA0)SPG]+

which is a linear operator B on S with norm ‖B‖ = ‖GΘΞ(BA1L
−1 + BA0)‖. If

Information Feedback Regularity holds, then this linear operator has norm ‖B‖ < 1
thus

‖DB(S)‖ = ‖B‖ < 1

In the next lemma, mε,I denotes the number of idiosyncratic shock dimensions.

Lemma 7 If Information Feedback Regularity holds, and mA < mε,I then Yτ ⊂
SmA,mε is a path-connected Banach manifold.

Proof. To show path-connectedness, the proof constructs a series of homotopies that
connect any two signals in Yτ

The first step of the proof is to define a homotopy through Yτ that begins with
a signal S1 = A1W 1 and ends with the signal S2 = A1W 2, by transforming the
white noise process W 1 into a second process W 2 with the same variance ΣW but
determined entirely by idiosyncratic shocks.

The norm of the Fréchet derivative of Bτ around S1 is

‖DB(S1)‖ = lim
∆→0

sup
D1 given ‖D1‖S=∆

‖B(S1 +D1)− B(S1)‖S

Per Theorem 8, a norm-maximizing deviation D1 is the linear combination of a com-
ponent spanned by W 1 and a component orthogonal to W 1. Let ADW 1 denote the
first component, and let AD⊥W

1
⊥ denote the latter, with W 1

⊥ the Wold representation’s
white noise basis with variance Σ⊥.

With this decomposition for the deviation D1 = ADW 1 + AD⊥W
1
⊥, the square of

the norm (A.7) becomes

lim
∆→0

sup
D1 given ‖D1‖S=∆

‖B(S1 +D1)− B(S1)‖2
S =

lim
∆→0
‖GΘ

(
[Ξ[(BA1L

−1 +BA0)AD]+]+W
1PG + [Ξ[(BA1L

−1 +BA0)AD⊥ ]+]+W
1
⊥PG

− [Ξ[(BA1L
−1 +BA0)A]+]+W

1PG
)
‖2
S

= lim
∆→0

sup
D1 s.t. ‖D1‖S=∆

‖GΘ
(
[Ξ[(BA1L

−1 +BA0)(AD − A)]+]+W
1PG

+ [Ξ[(BA1L
−1 +BA0)AD⊥ ]+]+W

1
⊥PG

)
‖2
S

There are many possible orthogonal white noise processes that could serve as W 1
⊥. Let

W 1
⊥,G and W 1

⊥,I denote such processes that are entirely aggregate and idiosyncratic
respectively. It is always possible to find such processes that are white noise and
orthogonal to W 1; for example, take the white noise from the Wold representations of
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[L−1W 1PG]+ and [L−1W 1(I − PG)]+ respectively to construct such candidates. The
norm-maximizing W 1

⊥ must be entirely aggregate, i.e. it must be in the image of the
projection PG to satisfy W 1

⊥,GPG = W 1
⊥,G. By construction W 1

⊥,G is orthogonal to W 1

and thus W 1PG, so the norm equality continues:

= lim
∆→0

sup
D1 s.t. ‖D1‖S=∆

‖GΘ[Ξ[(BA1L
−1 +BA0)(AD − A)]+]+W

1PG‖2
S+

‖GΘ[Ξ[(BA1L
−1 +BA0)AD⊥ ]+]+W

1
⊥,G‖2

S

W 1PG is not necessarily white noise; define its Wold representation as W 1PG =
A1
WGW

1
WG. For s ∈ [0, 1] define the homotopy S1

s = (1 − s)A1W 1 + sA1(W 1(I −
PG) + A1

WGW
1
⊥,I) for some W 1

⊥,I with the same variance as W 1
WG. S1

s has the same
autocovariance function as S1 and is orthogonal to W 1

⊥,G for all s. But its square of
the norm (A.7) is now given by

‖DB(S1
s )‖2 = lim

∆→0
sup

D1
s s.t. ‖D1

s‖S=∆

‖GΘ[Ξ[(BA1L
−1+BA0)(AD−A)]+]+(1−s)W 1PG‖2

S+

‖GΘ[Ξ[(BA1L
−1 +BA0)AD⊥ ]+]+W⊥,G‖2

S (54)

where W⊥,G denotes a norm-maximizing aggregate orthogonal deviation at each point
in the homotopy (AD and AD⊥ are unchanged).

Define S2 = S1
1 , i.e. the end point of the homotopy. This signal has the wold

representation S2 = A1W 2 and W 2 is entirely idiosyncratic i.e. W 2PG = 0. The norm
(54) is decreasing as s → 1: for all s, ‖DB(S1

s )‖ ≤ ‖DB(S1)‖. Therefore if S1 ∈ Y ,
then it is path-connected to S2 through Y . Moreover, S1 = A1W 1 ∈ im(Pτ ), so
S1(I−PG) = A1W 1(I−PG) ∈ im(Pτ ) and S1PG = A1A1

WGW
1
WG ∈ im(Pτ ). Therefore

by choosing W 1
⊥,I such that A1A1

WGW
1
⊥,I ∈ im(Pτ ), the homotopy S1

s ∈ im(Pτ ) for all
s. Thus if S1 ∈ Yτ , then it is path-connected to S2 through Yτ .

The second step of the proof is to show that the signal S2 = A1W 2 is path-
connected through Yτ to the signal S3 = A1W 3, where W 3 is a block diagonal white
noise process with the same variance ΣW = CWC

∗
W . At S2, the square of the operator

norm is simple, because W 2 is entirely idiosyncratic so the first term from equation
(54) drops out:

‖DB(S2)‖2 = lim
∆→0

sup
D2 s.t. ‖D2‖S=∆

‖GΘ[Ξ[(BA1L
−1 +BA0)AD⊥ ]+]+W⊥,G‖2

S (55)

and now the deviation must be given by D2 = AD⊥W⊥,G. Because S2 is entirely id-
iosyncratic, the right-hand side norm is achieved by any choice of W⊥,G, appropriately
scaled. Thus, this is the Fréchet derivative norm for any Si = A1W i so long as W i

is idiosyncratic with variance ΣW . C−1
W W i has variance matrix I, so C−1

W W i is a co-
isometry, and C−1

W W i is rational because τ is finite. C−1
W W i only has non-zero terms in

the mε,I > mA idiosyncratic dimensions. Within the idiosyncratic dimensions alone,
the adjoint of this operator is a “tall” rational isometry with mε,I ×mA blocks; Jury
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(2023) proves this set of isometries is path-connected. Also in this set is C−1
W W3,

where W3 is a mA×mε matrix-valued white noise process (i.e. its block Toeplitz op-
erator is block diagonal) with variance matrix ΣW and is also entirely idiosyncratic.
Therefore S2 = A1W 2 is path-connected through Yτ to the signal S3 = A1W 3

For the third step of the proof, let W4 denote a mA×mε matrix-valued white noise
process (i.e. its block Toeplitz operator is block diagonal) with variance matrix I.
Lemma 6 implies that all signals whose Wold representation features a matrix-valued
white noise operator are in Y . And if S1 is of order τ or less, then A1 is of order
τ or less. Therefore S3 = A1W 3 is path-connected to S4 = A1W 4 through Yτ by
the homotopy A1(sW 4 + (1 − s)W 3) for s ∈ [0, 1], and S4 is path-connected to W 4

through Yτ by the homotopy (sI + (1− s)A1)W 4 s ∈ [0, 1]. Therefore, all signals in
Yτ are path-connected to W 4 and thus each other.

The proof strategy for Theorem 6 requires a model to have more idiosyncratic
shocks than signals, so in cases where this is not satisfied, modify the model’s shock
space to have additional idiosyncratic “sunspot” dimensions. These sunspot shocks
do not affect the exogenous signal process SX , and because they are idiosyncratic (i.e.
the space spanned by the additional dimensions is in the kernel of PG) they cannot
affect the endogenous signals either. Therefore this modification introduces no new
fixed points, and has no effect on the norm of the Fréchet derivative or signal-stability,
but is useful so that Lemma 7 applies. With this addition, the shock dimensions are
now of size m∗ε. In the proof below, it is assumed that the operators (e.g. Bτ ) and
subspaces (e.g. Yτ ) are defined on this modified space SmA,m∗ε
Proof of Theorem 6. By construction, Lemma 1 implies that all signal-stable
fixed points are in Y .
Yτ is finite-dimensional and bounded, so I − Bτ : Yτ → SmA,m∗ε is proper.
Bτ = BPτ where Pτ is a projection operator, so ‖DBτ (S)‖ ≤ ‖DB(S)‖. Therefore

if S ∈ Y , then ‖DBτ (S)‖ < 1 and by the inverse function theorem, I − Bτ is a local
homeomorphism on Y and thus on Yτ .

I −Bτ : Yτ → SmA,m∗ε is a proper local homeomorphism and SmA,m∗ε is connected,
so by the Browder Theorem (Browder, 1954) I − Bτ is a covering projection with
finite fiber.32 If Information Feedback Regularity holds, then Yτ is path-connected by
Lemma 7 and SmA,m∗ε is simply connected because it is a Banach space. Therefore by
a standard monodromy theorem, I − Bτ : Yτ → SmA,m∗ε is a global homeomorphism
(Katriel, 1994, Thm 4.1).

There is at most one S ∈ Yτ such that S = Bτ (S), and Yτ contains all signal-
stable fixed points of Bτ , so there is at most one signal-stable approximate fixed point
of order τ . It remains to be proven that there is at most one signal-stable fixed point
of the untruncated operator B.

Suppose towards a contradiction that there are multiple signal-stable fixed points
Ŝi of B, indexed by i. By Theorem 4, these points must be locally unique. By Theorem

32For unfamiliar economists, Gutú (2017) provides an accessible summary of these properties.
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5, each of these points has a convergent sequence of signal-stable approximate fixed
points Ŝi,τ , indexed by the truncation order τ . Select a scalar r such that there are
disjoint balls of radius r around each fixed point. Select an approximation order
τ ∗, such that each ball b(Ŝi, r) contains an element of the sequence Ŝi,τ∗ . The ball
disjointedness implies that the operator Bτ∗ has multiple signal-stable approximate
fixed points. This is a contradiction; therefore there can be at most one signal-stable
fixed point of B.

A.8 Proofs Related to the Sufficient Condition

Proof of Theorem 7. Lemma 8 says that if the Sufficient Idiosyncrasy condition
(SIC) holds then all fixed points must be signal-stable. SIC also implies IFR:

r(Σ−1
I ) <

1− ‖GΘΞ(BA1L
−1 +BA0)‖2

4R2
N

‖GΘΞ(BA1L
−1 +BA0)‖2 + 4R2

Nr(Σ−1
I ) < 1

‖GΘΞ(BA1L
−1 +BA0)‖2 < 1− 4R2

Nr(Σ−1
I ) < 1

therefore ‖GΘΞ(BA1L
−1 + BA0)‖ < 1, which means that Theorem 6 holds, so there

is at most one signal-stable fixed point.
The proof of Theorem 7 is only straightforward because of Lemma 8.

Lemma 8 If the Sufficient Idiosyncrasy Condition holds, then all fixed points satis-
fying Ŝ = B(Ŝ) must be signal stable.

Proof. Consider a signal perturbation D ≡ Ŝ∆− Ŝ. Decompose the signal deviation
D = DŜ+D⊥Ŝ into the componentDŜ that is spanned by lags of Ŝ, and the orthogonal

component D⊥Ŝ. As in equation (47), the perturbed difference B(Ŝ∆)−B(Ŝ) is given
by

B(Ŝ∆)− B(Ŝ) = GΘ
(
[ζA∆]+W

∆ − [ζA]+W
)
PG (56)

Take the signal norm:

‖B(Ŝ∆)− B(Ŝ)‖S = ‖GΘ
(
[ζA∆]+W

∆ − [ζA]+W
)
PG‖S

PG is a projection operator, so this norm is bounded above by

≤ ‖GΘ
(
[ζA∆]+W

∆ − [ζA]+W
)
‖S = ‖GΘ

(
[ζA∆]+W

∆ − [ζA]+W
)
ēmε‖S

where the operator ēm denotes the block vector consisting of the first m basis vectors,
e.g. ēmε =

(
e1, ..., emε

)
. The equation then follows directly from the definition of the

signal norm, which only depends on the first block column of an operator.
[ζA]+W is the projection of the noncausal signals ζŜ onto current and past Ŝ.

To write this projection step as a linear operator, it is necessary to transpose the
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blocks of the signals. Ŝᵀ is still lower triangular block Toeplitz, but each block
is transposed. This approach is useful because Lemma 4 can simplify the block-
transposed representation. As in Appendix A.5.2, PŜ = Ŝᵀ(Ŝᵀ∗Ŝᵀ)−1Ŝᵀ∗ denotes the

projection onto the columns of Ŝᵀ, MŜ ≡ I − PŜ denotes the residual projection and

Ŝ−ᵀL ≡ (Ŝᵀ∗Ŝᵀ)−1Ŝᵀ∗ denotes the left inverse of Ŝᵀ.
Block-transpose the

(
[ζA∆]+W

∆ − [ζA]+W
)
ēmε block vector to continue the equal-

ity:
= ‖GΘ

((
[ζA∆]+W

∆ − [ζA]+W
)ᵀ
ēmA

)ᵀ ‖S
= ‖GΘ

(
Dᵀ

⊥ŜŜ
−ᵀ
L [(ζŜ)ᵀ]+ēmA + Ŝ−ᵀ∗L Dᵀ∗

⊥Ŝ[(ζŜ)ᵀ]+ēmA + PŜ[(ζDŜ)ᵀ]+ēmA

)ᵀ
‖S+o(‖D‖S)

by Lemma 4, using the D = DŜ + D⊥Ŝ decomposition, where Dᵀ

Ŝ
= PŜD

ᵀ and

D⊥Ŝ = MŜD
ᵀ. Then apply the triangle inequality to bound B(Ŝ∆)− B(Ŝ):

‖B(Ŝ∆)− B(Ŝ)‖S ≤

‖GΘ
(
Dᵀ

⊥ŜŜ
−ᵀ
L [(ζŜ)ᵀ]+ + Ŝ−ᵀ∗L Dᵀ∗

⊥Ŝ[(ζŜ)ᵀ]+ēmA

)ᵀ
‖S+‖ (PŜ[(ζDŜ)ᵀ]+ēmA)ᵀ ‖S+o(‖D‖S)

(57)

First consider the DŜ term in inequality (57), which by the signal norm definition
is

‖GΘ (PŜ[(ζDŜ)ᵀ]+ēmA)ᵀ ‖S = ‖GΘ (PŜ[(ζDŜ)ᵀ]+)ᵀ ‖S
then evaluate the norm-maximizing deviation:

≤ sup
d s.t.‖d‖S=‖DŜ‖S

‖GΘ (PŜ[(ζd)ᵀ]+)ᵀ ‖Ŝ

≤ sup
d s.t.‖d‖S=‖DŜ‖S

‖GΘ (PŜ(ζd)ᵀ)ᵀ ‖S ≤ sup
d s.t.‖d‖S=‖DŜ‖S

‖GΘ ((ζd)ᵀ)ᵀ ‖Ŝ

because to be norm-maximizing, applying the annihilator must not be norm-reducing
(the norm-maximizing d is a signal lagged arbitrarily far into the past), and then
applying PŜ must not be norm-reducing (the norm-maximizing d is spanned by current

and past Ŝ). Continuing the inequality:

= sup
d s.t.‖d‖S=‖DŜ‖S

‖GΘζd‖S = ‖GΘζ‖‖DŜ‖S

by definition of the operator norm. To summarize this chain of inequalities, the DŜ

component of inequality (57) is bounded by

‖GΘ (PŜ[(ζDŜ)ᵀ]+ēm)ᵀ ‖S ≤ ‖GΘΞ(BA1L
−1 +BA0)‖‖DŜ‖S (58)

which uses the definition ζ = Ξ(BA1L
−1 +BA0).
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Next consider the D⊥Ŝ terms from inequality (57):

‖GΘ
(
Dᵀ

⊥ŜŜ
−ᵀ
L [(ζŜ)ᵀ]+ēm + Ŝ−ᵀ∗L Dᵀ∗

⊥Ŝ[(ζŜ)ᵀ]+ēm

)ᵀ
‖S

= ‖GΘ
(
Dᵀ

⊥ŜŜ
−ᵀ
L [(ζŜ)ᵀ]+ + Ŝ−ᵀ∗L Dᵀ∗

⊥Ŝ[(ζŜ)ᵀ]+

)ᵀ
‖S

= ‖GΘ
((
Dᵀ

⊥ŜŜ
−ᵀ
L + Ŝ−ᵀ∗L Dᵀ∗

⊥Ŝ

)
[(ζŜ)ᵀ]+

)ᵀ
‖S

Lemma 9 implies

‖GΘ
((
Dᵀ

⊥ŜŜ
−ᵀ
L + Ŝ−ᵀ∗L Dᵀ∗

⊥Ŝ

)
[(ζŜ)ᵀ]+

)ᵀ
‖S

≤ ‖
(
Dᵀ

⊥ŜŜ
−ᵀ
L + Ŝ−ᵀ∗L Dᵀ∗

⊥Ŝ

)
‖
(
‖GΘζ‖‖ŜPG‖S + ϑI

)
Ŝ is a fixed point and IFR holds, so by Lemma 2, its aggregate component is bounded
by ‖ŜPG‖S ≤ ‖SXPG‖S+ϑI

1−‖GΘζ‖ . Therefore the inequality becomes

‖GΘ
((
Dᵀ

⊥ŜŜ
−ᵀ
L + Ŝ−ᵀ∗L Dᵀ∗

⊥Ŝ

)
[(ζŜ)ᵀ]+

)ᵀ
‖S

≤ ‖
(
Dᵀ

⊥ŜŜ
−ᵀ
L + Ŝ−ᵀ∗L Dᵀ∗

⊥Ŝ

)
‖
(
‖GΘζ‖‖SXPG‖S + ϑI

1− ‖GΘζ‖
+ ϑI

)
= ‖

(
Dᵀ

⊥ŜŜ
−ᵀ
L + Ŝ−ᵀ∗L Dᵀ∗

⊥Ŝ

)
‖RN

The operator norm ‖Dᵀ

⊥ŜŜ
−ᵀ
L +Ŝ−ᵀ∗L Dᵀ∗

⊥Ŝ‖ is relatively easy to characterize because
the operator is self-adjoint, so its operator norm is given by its spectral radius:

‖Dᵀ

⊥ŜŜ
−ᵀ
L + Ŝ−ᵀ∗L Dᵀ∗

⊥Ŝ‖ = r
(
Dᵀ

⊥ŜŜ
−ᵀ
L + Ŝ−ᵀ∗L Dᵀ∗

⊥Ŝ

)
≤ r

(
Dᵀ

⊥ŜŜ
−ᵀ
L

)
+ r
(
Ŝ−ᵀ∗L Dᵀ∗

⊥Ŝ

)
= 2r

(
Dᵀ

⊥ŜŜ
−ᵀ
L

)
because the spectral radius is sub-additive and adjoint-invariant.33 Next, consider the
block-transpose of the Wold representation Ŝᵀ = W ᵀAᵀ, and recognize that W ᵀC−∗W
is an isometry because W ᵀ∗W ᵀ = ΣW = CWC

∗
W . Therefore the definition Ŝ−ᵀL =

(Ŝᵀ∗Ŝᵀ)−1Ŝᵀ∗ implies Ŝ−ᵀL = (Aᵀ∗W ᵀ∗W ᵀAᵀ)−1Aᵀ∗W ᵀ∗ = A−ᵀC−∗W C−1
W A−ᵀ∗Aᵀ∗W ᵀ∗

which simplifies to A−ᵀC−∗W (W ᵀC−∗W )∗. Thus:

2r
(
Dᵀ

⊥ŜŜ
−ᵀ
L

)
= 2r

(
Dᵀ

⊥ŜA
−ᵀC−∗W (W ᵀC−∗W )∗

)
≤ 2r

(
Dᵀ

⊥ŜA
−ᵀC−∗W

)
33This relationship actually holds with equality, although that is unnecessary to show for this

proof.
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because W ᵀC−∗W is an isometry. Dᵀ

⊥Ŝ and A−ᵀC−∗W are both block lower triangular, so
the block transpose can be reversed, i.e.

2r
(
Dᵀ

⊥ŜA
−ᵀC−∗W

)
= 2r

(
C−1
W A−1D⊥Ŝ

)
The diagonal blocks of the operator C−1

W A−1D⊥Ŝ are C−1
W D⊥Ŝ,0, because the diagonal

blocks of A are identities. The spectral radius of a block triangular operator is the
largest spectral radius of the main diagonal blocks, therefore

2r
(
(ACW )−1D⊥Ŝ

)
= 2r

(
C−1
W D⊥Ŝ,0

)
where D⊥Ŝ,0 is the main diagonal block of D⊥Ŝ. And the spectral radius is bounded
above by the norm:

2r
(
C−1
W D⊥Ŝ,0

)
≤ 2‖C−1

W D⊥Ŝ,0‖ ≤ 2‖C−1
W ‖‖D⊥Ŝ,0‖

To summarize, this chain of inequalities implies the bound

‖GΘ
(
Dᵀ

⊥ŜŜ
−ᵀ
L [(ζŜ)ᵀ]+ēm + Ŝ−ᵀ∗L Dᵀ∗

⊥Ŝ[(ζŜ)ᵀ]+ēm

)ᵀ
‖S ≤ 2RN‖C−1

W ‖‖D⊥Ŝ,0‖ (59)

Next I will bound each of the right-hand side terms.
To characterize C−1

W , first decompose the innovation process as W = WI + W⊥I
where WI = SX,0(I − PG), i.e. the component of the exogenous process SX that is
due to contemporaneous idiosyncratic shocks. W⊥I is the residual. Because these
components are orthogonal, the forecast error variance satisfies

ΣW = ΣI + Σ⊥I (60)

where ΣI = WIW
∗
I and Σ⊥I = W⊥IW

∗
⊥I . All variance matrices in equation (60)

are real, symmetric, and positive-semi definite. Therefore, the minimum eigenvalues
(λW , λI , λ⊥I) of the respective matrices (ΣW ,ΣI ,Σ⊥I) satisfy

0 < λI + λ⊥I ≤ λW

The SIC implies that the variance matrix ΣI is positive definite, so 0 < λI Invert:

0 <
1

λW
≤ 1

λI + λ⊥I
≤ 1

λI

The maximum eigenvalues of the inverse matrices are the inverse minimum eigenval-
ues, which immediately implies that the spectral radii satisfy√

r
(
Σ−1
W

)
≤
√

r
(
Σ−1
I

)
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and because C−∗W C−1
W = Σ−1

W and C−∗I C−1
I = Σ−1

I , these square roots are equivalent to
the matrix norms:

‖C−1
W ‖ ≤ ‖C

−1
I ‖ (61)

To characterize ‖D⊥Ŝ,0‖, use that the operator norm of a matrix is bounded above
by its Frobenius norm:

‖D⊥Ŝ,0‖ ≤ ‖D⊥Ŝ,0‖F ≤ ‖D⊥Ŝ‖S (62)

where ‖ · ‖F denotes the Frobenius norm, i.e. the root sum of squares of all entries
in D⊥Ŝ,0. This must be less than or equal to ‖D⊥Ŝ‖S, the root sum of squares of all
entries in all {D⊥Ŝ,j}∞j=0 matrices (see equation (40)).

By applying inequalities (61) and (62), inequality (59) becomes

‖GΘ
(
Dᵀ

⊥ŜŜ
−ᵀ
L [(ζŜ)ᵀ]+ēm + Ŝ−ᵀ∗L Dᵀ∗

⊥Ŝ[(ζŜ)ᵀ]+ēm

)ᵀ
‖S ≤ 2RN‖C−1

I ‖‖D⊥Ŝ‖S

Combining this result with inequality (58), inequality (57) becomes

‖B(Ŝ∆)− B(Ŝ)‖S ≤ ‖GΘΞ(BA1L
−1 +BA0)‖‖DŜ‖S + 2RN‖C−1

I ‖‖D⊥Ŝ‖S + o(‖D‖S)
(63)

The deviations DŜ and D⊥Ŝ are orthogonal, i.e. ‖DŜ‖2
S + ‖D⊥Ŝ‖2

S = ‖D‖2
S. By

Lemma 10, the linear combination of deviations maximizing the right-hand side of in-

equality (63) gives a maximum value
√
‖GΘΞ(BA1L−1 +BA0)‖2 +

(
2RN‖C−1

I ‖
)2‖D‖S.

Therefore the inequality becomes

‖B(Ŝ∆)− B(Ŝ)‖S <
√
‖GΘΞ(BA1L−1 +BA0)‖2 +

(
2RN‖C−1

I ‖
)2‖D‖S + o(‖D‖S)

and taking the limit as ‖D‖S → 0 bounds the Fréchet derivative:

‖DB(Ŝ)‖ <
√
‖GΘΞ(BA1L−1 +BA0)‖2 +

(
2RN‖C−1

I ‖
)2

=
√
‖GΘΞ(BA1L−1 +BA0)‖2 + 4R2

Nr(Σ−1
I )

again using that ‖C−1
I ‖ =

√
r(Σ−1

I ). The Sufficient Idiosyncrasy Condition implies√
‖GΘΞ(BA1L−1 +BA0)‖2 + 4R2

Nr(Σ−1
I ) < 1, and thus ‖DB(Ŝ)‖ < 1. So if Ŝ is a

fixed point, it must be stable.

Lemma 9 If the signal S is a fixed point, then for any operator Φ

‖GΘ (Φ[(ζS)ᵀ]+)ᵀ ‖S ≤ ‖Φ‖ (‖GΘζ‖‖SPG‖S + ϑI)

where ϑI is defined as in Lemma 2.
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Proof. Decompose the forecast [(ζS)ᵀ]+ into components driven by aggregate and
idiosyncratic shocks: [(ζS)ᵀ]+ = [(ζSPG)ᵀ]+ + [(ζS(I − PG))ᵀ]+. By the triangle
inequality:

‖GΘ (Φ[(ζS)ᵀ]+)ᵀ ‖S
≤ ‖GΘ (Φ[(ζSPG)ᵀ]+)ᵀ ‖S + ‖GΘ (Φ[(ζS(I − PG))ᵀ]+)ᵀ ‖S (64)

First, consider the aggregate term:

‖GΘ (Φ[(ζSPG)ᵀ]+)ᵀ ‖S ≤ sup
s s.t.‖s‖S=‖SPG‖S

‖GΘ (Φ[(ζs)ᵀ]+)ᵀ ‖S

= sup
s s.t.‖s‖S=‖SPG‖S

‖GΘ (Φ(ζs)ᵀ)ᵀ ‖S

because to be norm-maximizing, applying the annihilator must not be norm-reducing
(the norm-maximizing s is a signal lagged arbitrarily far into the past) which also
means (ζs)ᵀ = sᵀζᵀ + κ̃ for an arbitrarily small κ̃. Using the supremum, the κ̃ can be
ignored:

= sup
s s.t.‖s‖S=‖SPG‖S

‖GΘ (Φsᵀζᵀ)ᵀ ‖S

next, consider the norm-maximizing object z = Φsᵀ instead of s alone. The supremum
becomes:

= sup
z s.t. ‖z‖S=‖Φsᵀ‖S

‖GΘ (zᵀζᵀ)ᵀ ‖S = sup
z s.t. ‖z‖S=‖Φsᵀ‖S

‖GΘζz‖S

≤ sup
z s.t. ‖z‖S=‖Φ‖‖sᵀ‖S

‖GΘζz‖S

because ‖Φsᵀ‖S ≤ ‖Φ‖‖PGSᵀ‖S by definition of the operator norm and the constraint
‖sᵀ‖S = ‖SPG‖S. The operator norm definition also implies this quantity is

= ‖GΘζ‖‖Φ‖‖SPG‖S

Second, consider the idiosyncratic term, which does not simplify so nicely. In the
image of B, S(I − PG) = SX(I − PG):

‖GΘ (Φ[(ζS(I − PG))ᵀ]+)ᵀ ‖S
= ‖GΘ (Φ[(ζSX(I − PG))ᵀ]+)ᵀ ‖S

≤ ‖GΘ‖‖ (Φ[(ζSX(I − PG))ᵀ]+)ᵀ ‖S
= ‖GΘ‖‖Φ[(ζSX(I − PG))ᵀ]+‖S
≤ ‖GΘ‖‖Φ‖‖[(ζSX(I − PG))ᵀ]+‖S

= ‖Φ‖ϑI
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per the definition ϑI = ‖GΘ‖‖ [ζSX(I − PG)]+ ‖S, and that the signal norm is block-
transpose invariant.

Substitute the aggregate and idiosyncratic component bounds back into inequality
(64)

‖GΘ (Φ[(ζS)ᵀ]+)ᵀ ‖S ≤ ‖Φ‖‖GΘζ‖‖SPG‖S + ‖Φ‖ϑI

Lemma 10 Let X and Y be orthogonal signal processes, and let λXX + λY Y be a
linear combination with norm z:

z = ‖λXX + λY Y ‖S

For scalars a and b, the linear combination that maximizes the quantity a‖λXX‖S +
b‖λY Y ‖S gives the value

max
λX ,λy s.t. ‖λXX+λY Y ‖S=z

a‖λXX‖S + b‖λY Y ‖S = z
√
a2 + b2

Proof. X and Y are orthogonal, so the square of the norm of the linear combination
is

z2 = ‖λXX + λY Y ‖2
S = ‖λXX‖2

S + ‖λY Y ‖2
S

Define the new variables x and y such that x = λX
z
‖X‖S and y = λY

z
‖Y ‖S. In these

variables, the constrained maximization problem is

max
x,y

azx+ bzy

s.t. 1 = x2 + y2

Rewritten as a maximization problem in one variable:

max
x

azx+ bz
√

1− x2

has first order condition
a = b

x√
1− x2

a2(1− x2) = b2x2

a2

b2 +B2
= x2

and

y2 = 1− x2 =
b2

a2 + b2

Taking roots, the solutions for x and y are

x =
a√

a2 + b2
y =

b√
a2 + b2
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Plug these values back into the objective function:

azx+ bzy = z
a2

√
a2 + b2

+ z
b2

√
a2 + b2

= z
√
a2 + b2

A.9 Proofs for the Modified Confounding Dynamics Model
with Idiosyncratic Noise

Proof of Proposition 4. Conjecture that pt = bwxt is an equilibrium price process
for some b. Then agents’ individual price pi,t = βEi,t[xt+1] is given by

pi,t = βE[xt+1|{zi,t−j, si,t−j}∞j=0] = βE[αut|{zi,t−j, si,t−j}∞j=0] = βE[αut|wzi,t, si,t] (65)

where wzi,t denotes the individual Wold innovation to signal zi,t, given by

wzi,t =
1

1 + θL
zi,t = wxt + τ

− 1
2

y εyi,t

With this structure, equation (65) becomes

pi,t = βE[wxt |wzi,t, si,t] = β
τyw

z
i,t + τvbsi,t

τy + τvb2 + 1

per Lemma 12. Therefore the aggregate price follows

pt = β
τy + τvb

τy + τvb2 + 1
wxt

and the conjecture pt = bwxt requires that b solves the cubic

b(τy + τvb
2 + 1) = β(τy + τvb) (66)

The discriminant D associated with the cubic equation is

D = −4τv(τy + 1− βτv)3 − 27τ 2
vβ

2τ 2
y

which is negative if and only if

27β2τvτ
2
y > 4(βτv − τy − 1)3

implying a unique b solves equation (66).

Proof of Proposition 5. Per Proposition 2, in this model

‖GΘΞ(BA1L
−1 +BA0)‖ = β (67)
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and this operator is not affected by modifying the exogenous signal SX to include
idiosyncratic shocks.

The endogenous signal radius RN = ‖GΘΞ(BA1L
−1+BA0)‖‖SXPG‖S+ϑI

1−‖GΘΞ(BA1L−1+BA0)‖ depends on the
signal norm of the exogenous process SX . In this model, the signal vector is

Ai,t =

(
zi,t
si,t

)
=

(
(1 + αL)ut + (1 + θL)τ

− 1
2

y εyi,t

pt + τ
− 1

2
v εvi,t

)

Only the price pt is endogenous, so the exogenous process is

SX =

(
(1 + αL) (1 + θL)τ

−1/2
y 0

0 0 τ
−1/2
v

)

where the columns correspond to (ut, ε
y
i,t, ε

v
i,t) respectively, and τ

−1/2
y and τ

−1/2
v are the

standard deviations of the idiosyncratic shocks. Per equation (19), the SX operator
has the block Toeplitz representation:

=



(
1 τ

−1/2
y 0

0 0 τ
−1/2
v

) (
0 0 0
0 0 0

) (
0 0 0
0 0 0

)
...(

α θτ
−1/2
y 0

0 0 0

) (
1 τ

−1/2
y 0

0 0 τ
−1/2
v

) (
0 0 0
0 0 0

)
...(

0 0 0
0 0 0

) (
α θτ

−1/2
y 0

0 0 0

) (
1 τ

−1/2
y 0

0 0 τ
−1/2
v

)
...

...
...

...
. . .


while the aggregate component zeroes any coefficient on idiosyncratic shocks: SXPG =(

(1 + αL) 0 0
0 0 0

)
Per Definition 2, the signal norm is the root sum of squared vector norms of the

first three columns. For the aggregate component, only the first column is nonzero:

‖SXPG‖S = ‖
(

1
α

)
‖ =
√

1 + α2 (68)

The term ϑI = ‖GΘ‖‖ [Ξ(BA1L
−1 +BA0)SX(I − PG)]+ ‖S depends on the norm

of a causal operator GΘ. As explained in Section 2.3.2, this operator is simply GΘ =(
0
1

)
, so ‖GΘ‖ = 1. The non-causal operator is Ξ(BA1L

−1 + BA0) = L−1
(
β 0

)
so the forecasted idiosyncratic component is

[
Ξ(BA1L

−1 +BA0)SX(I − PG)
]

+
=

[
L−1

(
β 0

)( 0 (1 + θL)τ
−1/2
y 0

0 0 τ
−1/2
v

)]
+
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=
[
L−1

(
0 β(1 + θL)τ

−1/2
y 0

)]
+

=
(

0 βθτ
−1/2
y 0

)
with norm ‖ [Ξ(BA1L

−1 +BA0)SX(I − PG)]+ ‖S = βθτ
−1/2
y . Putting these pieces to-

gether, ϕI is given by
ϕI = βθτ−1/2

y (69)

Equations (67) (68) and (69) imply that the RN bound on endogenous signals is

RN =
β
√

1 + α2 + βθτ
−1/2
y

1− β
(70)

The SIC also depends on ΣI , the variance of the contemporaneous idiosyncratic

shocks. In this model SX,0 =

(
1 τ

−1/2
y 0

0 0 τ
−1/2
v

)
, and the idiosyncratic component

is

SX,0(I − PG) =

(
1 τ

−1/2
y 0

0 0 τ
−1/2
v

) 0 0 0
0 1 0
0 0 1

 =

(
0 τ

−1/2
y 0

0 0 τ
−1/2
v

)

Therefore the variance of the contemporaneous idiosyncratic component is

ΣI =

(
τ−1
y 0
0 τ−1

v

)
and the spectral radius of the inverse is

r(Σ−1
I ) = max{τy, τu} (71)

Equations (67) (70) and (71) imply that the SIC holds if

max{τy, τu} <
1− β2

4
(
β
√

1+α2+βθτ
−1/2
y

1−β

)2

=
(1− β2)(1− β)2

4β2
(√

1 + α2 + θτ
−1/2
y

)2 =
(1 + β)(1− β)3

4β2
(√

1 + α2 + θτ
−1/2
y

)2

A.10 Self-Map Lemma

Lemma 11 B is an operator mapping SmA,mε → SmA,mε

Proof. The elements of B are in the following Banach spaces:
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� SX ∈ SmA,mε

� A ∈ Sm,m

� X ∈ Sm,m

� W ∈ SmA,mε

� PG ∈ Sn,n

The blocks agree so that GXWPG ∈ S, which is in the same space as SX , so SX +
GXWPG ∈ S.

A.11 Proofs of Propositions for the Example Models

A.11.1 Confounding Dynamics Proofs

This section proves several propositions about the confounding dynamics model in-
troduced in Section 2.3.
Proof of Proposition 1. The forecast conditional on the confounding dynamics
signal process is

E[xt+1|{pCDt−j , zi,t−j}∞j=0] = E[xt+1|{wFt−j, wi,t−j}∞j=0]

because the wFt process is invertible from the pCDt process, and the component of zi,t
that is orthogonal to the wFt process is spanned by the idiosyncratic shock process
yi,t. Then, the expectation places no weight on the idiosyncratic shock because xt is
entirely aggregate:

= E[xt+1|{wFt−j}∞j=0] = [L−1AF (L)]+w
F
t

Thus with this information structure, the equilibrium price is

pi,t = βE[xt+1|{wFt−j}∞j=0] = pCDt

Proof of Proposition 2. Information Feedback Regularity is satisfied in this

model: the operator GΘΞ(BA1L
−1 +BA0) =

(
0 0

L−1β 0

)
has norm β < 1, because

L−1β is the only non-zero entry, and ‖L−1β‖ = β‖L−1‖ = β.

Proof of Proposition 3. The shock vector εi,t =

(
ut
yi,t

)
is revealed by the

time series Ai,t =

(
zi,t
pt

)
because Ai,t = A(L)εi,t and A(L) is invertible for the full

information solution.
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Consider a deviation A∆
i,t = A∆(L)εi,t in a ball around Ai,t with radius ∆ such

that ‖A∆ −A‖ < ∆. The set of square invertible operators is open, so there exists a
radius ∆ such that all deviations A∆(L) are invertible.

Next, consider the signal operator of any such deviation B(S∆), and note that the
signal operator S∆ is equivalent to the Wold representation A∆ because the signal is
invertible. Equation (18) implies that the deviation in signal operators is given by

B(A∆)− B(A) =

(
0
1

)[
L−1

(
β 0

)
A∆
]

+
PG −

(
0
1

)[
L−1

(
β 0

)
A
]

+
PG

=

[
L−1

(
0 0
β 0

)(
A∆ − A

)]
+

PG

Take signal norms:

‖B(A∆)− B(A)‖S = ‖
[
L−1

(
0 0
β 0

)(
A∆ − A

)]
+

PG‖S

≤ ‖L−1

(
0 0
β 0

)(
A∆ − A

)
‖S

because [·]+ and PG are projections

≤ ‖L−1

(
0 0
β 0

)
‖‖
(
A∆ − A

)
‖S

by definition of the operator norm. Finally, ‖L−1

(
0 0
β 0

)
‖ = β < 1, so it must be

that
‖B(A∆)− B(A)‖S < ‖

(
A∆ − A

)
‖S

and the full information solution Ai,t must be signal-stable.

A.11.2 Beauty Contests

This section proves results about the beauty contests studied in Section 5.1.

Proof of Proposition 6. The operator

 0 ϕ αL−1

0 0 0
0 Lϕ α

 has the block Toeplitz
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representation C per equation (19):

C =



 0 ϕ 0
0 0 0
0 0 α

  0 0 α
0 0 0
0 0 0

  0 0 0
0 0 0
0 0 0

 ... 0 0 0
0 0 0
0 ϕ 0

  0 ϕ 0
0 0 0
0 0 α

  0 0 α
0 0 0
0 0 0

 ... 0 0 0
0 0 0
0 0 0

  0 0 0
0 0 0
0 ϕ 0

  0 ϕ 0
0 0 0
0 0 α

 ...

...
...

...
. . .


and iterating the operator n times gives 0 ϕ αL−1

0 0 0
0 Lϕ α

n

=

 0 ϕαn−1 αnL−1

0 0 0
0 Lϕαn−1 αn

 =⇒ Cn = αn−1C

What is the norm of this operator? Let Ci denote the ith column of C. Then by
definition:

‖C‖ = max
wi, s.t.

∑∞
i=1 w

2
i=1

(
∞∑
i=1

‖wiCi‖2

)1/2

which is bounded below by maximum row and column norms. These are the columns
with either two ϕ terms or two α terms, or the rows with a single term of each:

‖C‖ ≥ max

{
‖
(
ϕ
ϕ

)
‖, ‖

(
α
α

)
‖, ‖

(
ϕ α

)
‖
}

= max
{√

2ϕ,
√

2α,
√
ϕ2 + α2

}
Thus IFR is satisfied only if max

{√
2ϕ,
√

2α, ϕ2 + α2
}
< 1.

The spectral radius is even simpler:

r (C) = lim
n→∞

‖Cn‖
1
n = lim

n→∞

(
‖C‖αn−1

) 1
n = α

Thus the Information Feedback Sub-Regularity condition (Appendix B) is satisfied
only if α < 1.

Lemma 12 For two noisy signals s1 and s2 of a random variable x ∼ N(0, 1) given
by

s1 = β1x+ u1 s2 = β2x+ u2
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where u1 ∼ N(0, τ−1
1 ), u2 ∼ N(0, τ−1

2 ), and u1, u2, and x are all uncorrelated. The
conditional expectation of x is given by

E[x|s1, s2] =
β1τ1s1 + β2τ2s2

β2
1τ1 + β2

2τ2 + 1

Proof. The random variables are normal, so the expectation is linear:

E[x|s1, s2] = b1s1 + b2s2

for some b1 and b2. Per the law of total expectation:

Cov(x, s1) = b1V ar(s1)+b2Cov(s2, s1) Cov(x, s2) = b1Cov(s1, s2)+b2V ar(s2)

The variances and covariances imply

β1 = b1(β2
1 + τ−1

1 ) + b2β1β2 β2 = b1β1β2 + b2(β2
2 + τ−1

2 )

Solving the system gives

b1 =
β1τ1

β2
1τ1 + β2

2τ2 + 1
b2 =

β2τ2

β2
1τ1 + β2

2τ2 + 1

A.12 Exponential Stability Proofs

This section proves results related to exponentially stable fixed points (Appendix B).
Proof of Proposition 7. Information Feedback Sub-Regularity is satisfied in this
model: the relevant operator is represented as

GΘΞ(BA1L
−1 +BA0) =

(
0 0

L−1β 0

)
so for any power n > 1, (GΘΞ(BA1L

−1 +BA0))
n

= 0. Therefore the spectral radius
is

r
(
GΘΞ(BA1L

−1 +BA0)
)

= lim
n→∞

‖
(
GΘΞ(BA1L

−1 +BA0)
)n ‖ 1

n = 0

Proof of Theorem 9. Apply Lemma 5, raising both sides of equation (50) to 1/n
and taking the limit implies that the spectral radii satisfy

r
(
GΘΞ(BA1L

−1 +BA0)
)

= r
(
LmA
PG

Rmε
(GΘ)ᵀQPSL

mA
PS

)
With this equality, Lemma 13 says the spectral radius of the Fréchet derivative

r
(
DB(Ŝ)

)
at a fixed point Ŝ satisfies

r
(
DB(Ŝ)

)
≥ r

(
GΘΞ(BA1L

−1 +BA0)
)

Thus IFR is necessary for r
(
DB(Ŝ)

)
< 1 to hold at a fixed point, which by Property

4 is true if and only if the fixed point is exponentially stable.
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Lemma 13 The spectral radius of the Fréchet derivative r
(
DB(Ŝ)

)
at a fixed point

Ŝ satisfies

r
(
DB(Ŝ)

)
≥ r

(
LmA
PG

Rmε
(GΘ)ᵀQPŜ

LPŜ

)
Proof.

Consider a signal with Wold representation S = AW . Let SPS denote the subset
of the signal space that is spanned by current and past S (and thus W ). Let SMS

denote the residual space orthogonal to current and past S. The sets are orthogonal
complements so that

SmA,mε = SPS ⊕ SMS

Let BPS(S̃) denote the operator projecting a signal S̃ onto current and past S (i.e.
onto the space SPS) and then applying B.

First I characterize the image of BPS. The Wold representation S = AW features
invertible operator A. The set of square invertible operators is open, so there exists a
radius δ such that all deviations Ã∆ with ‖Ã∆−A‖S < δ are invertible. Now consider
a deviation S∆ such that ‖S∆−S‖S < δ and S∆ ∈ SPS so that the deviation is spanned
by current and past W , i.e. S∆ = A∆W for some A∆. ‖A∆−A‖S = ‖S∆− S‖S < δ,
so A∆ is invertible and A∆W is the Wold representation. Therefore S∆ ∈ SPS . This
implies that BPS(S̃) maps SPS → SPS in a neighborhood around S.

Next, consider a fixed point Ŝ = B(Ŝ), and a deviation Ŝ + D. DB(Ŝ) is the
Fréchet derivative, so

B(Ŝ +D)− B(Ŝ) = Ŝ +DB(Ŝ)D + o(‖D‖S)− Ŝ = DB(Ŝ)D + o(‖D‖S)

which implies

Bn(Ŝ +D)− Bn(Ŝ) = Bn−1(Ŝ +DB(Ŝ)D + o(‖D‖S))− Bn−1(Ŝ)

and repeated iteration gives

Bn(Ŝ +D)− Bn(Ŝ) = DB(Ŝ)nD + o(‖D‖S)

Because B maps SPŜ → SPŜ on a neighborhood around Ŝ, the Fréchet derivative

DB(Ŝ) also maps SPŜ → SPŜ . This implies that

DB(Ŝ)PŜ = PŜDB(Ŝ)PŜ (72)

where again PŜ denotes projecting onto current and past Ŝ before or after applying

the linear operator DB(Ŝ). MŜ = I − PŜ denotes projecting onto the orthogonal
subspace.

Next consider the operator norm of nth power of the Fréchet derivative:

‖DB(Ŝ)n‖ = ‖DB(Ŝ)n(PŜ +MŜ)‖
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From the operator norm definition, consider each term:

‖DB(Ŝ)nPŜ‖ = sup
yŜ

‖DB(Ŝ)nPŜyŜ‖S
‖yŜ‖S

‖DB(Ŝ)nMŜ‖ = sup
y⊥Ŝ

‖DB(Ŝ)nMŜy⊥Ŝ‖S
‖y⊥Ŝ‖S

The signals yŜ ∈ SPŜ and y⊥Ŝ ∈ SMŜ
maximizing these norms are orthogonal; there-

fore, the unit signal y = yŜ+y⊥Ŝ maximizing ‖DB(Ŝ)ny‖S is a linear combination satis-

fying ‖yŜ‖2
S+‖y⊥Ŝ‖2

S = 1. By lemma 10, maximizing ‖DB(Ŝ)nPŜyŜ+DB(Ŝ)nMŜy⊥Ŝ‖S
subject to this constraint implies the operator norm satisfies

‖DB(Ŝ)n‖ =

√
‖DB(Ŝ)nPŜ‖2 + ‖DB(Ŝ)nMŜ‖2 (73)

Combining equation (73) with equation (72) implies

‖DB(Ŝ)n‖ ≥ ‖
(
DB(Ŝ)PŜ

)n
‖

‖DB(Ŝ)n‖
1
n ≥ ‖

(
DB(Ŝ)PŜ

)n
‖

1
n

and in the limit
r
(
DB(Ŝ)

)
≥ r

(
DB(Ŝ)PŜ

)
Finally, Theorem 8 gives the matrix representation for the Fréchet derivative acting
on SPŜ as LmA

PG
Rmε

(GΘ)ᵀQPŜ
LPŜ

.

B Exponential Stability

This section introduces an alternative type of stability: exponential stability. Many
properties of signal-stable equilibria also apply to exponentially stable equilibria. The
main drawback of studying this type of stability is that it has no analog to Theorem
6: exponentially stable fixed points may not be globally unique.

B.1 Definitions

The signal-stability property defined in Section 3.4 represents “contractive stability”.
Everywhere in a neighborhood around a signal-stable fixed point, B is a contraction.

Contractive stability is a strong property. A weaker form of stability is “exponen-
tial stability”, where there is some k such that Bk is a contraction on a neighborhood
around the fixed point. Under this definition, if there is a small perturbation to a
fixed point, the operator B can cause large deviations in signals, but after enough
repeated applications of B, the signal must converge. Put another way, exponentially
stable fixed points are robust to a single perturbation, but not necessarily repeated
perturbations. This form of stability is formally defined as follows:
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Definition 6 An equilibrium fixed point signal satisfying S = B(S) is called expo-
nentially stable if there exists some neighborhood of S, some α ∈ (0, 1) and κ ≥ 1
such that for any S∆ in the neighborhood, ‖Bk(S∆) − Bk(S)‖S < καk‖S∆ − S‖S for
all k ≥ 0.

Because exponential stability is a weaker property than signal-stability, IFR is no
longer a necessary condition. However, exponential stability does have an analogous
condition: Information Feedback Sub-Regularity (IFSR).

Condition 3 A model satisfies Information Feedback Sub-Regularity if

r
(
GΘΞ(BA1L

−1 +BA0)
)
< 1

r (·) here denotes the spectral radius, which measures by how much repeated appli-
cation of an operator can increase the variance of any signal process. Specifically, for
a linear operator A, the spectral radius is given by

r (A) ≡ lim
k→∞
‖Ak‖

1
k

where ‖ · ‖ is the operator norm. The spectral radius is equivalent to the largest
eigenvalue of a finite dimensional matrix. (Although in infinite dimensions, there
may not exist a largest eigenvalue.)

Accordingly, Condition 3 says that repeated application of this operator must
decrease the variance of a signal. The spectral radius of this operator represents how
much Bk(S) (with k large) can be changed by perturbing the signal process S in a
way that is spanned by the forecast error process W .

Proposition 3 demonstrated in the asset pricing example (Section 2.3) that Infor-
mation Feedback Regularity is straightforward to check from a models assumptions.
Proposition 7 shows that sub-regularity is similarly straightforward:

Proposition 7 Information Feedback Sub-Regularity is always satisfied in the con-
founding dynamics model.

Proof: Appendix A.12
This result reveals that exponential stability is weaker than signal stability. In

the confounding dynamics model, β < 1 is necessary for signal-stable fixed points to
exist. This is because there is a perturbation to the fixed point that increases the
implied signal deviation by a factor of β. However, if this is a one-off perturbation,
the deviation is short-lived. Proposition 7 implies that repeated application of B will
return to the fixed point for any value of β.
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B.2 Properties of Exponentially Stable Fixed Points

This section describes some properties of exponentially stable fixed points. Each is
an analog a signal-stability property derived in Section 3.4.

The norm of the Fréchet derivative DB(Ŝ) determined if a fixed point Ŝ was
signal-stable. Similarly, the spectral radius of DB(Ŝ) determines if the fixed point is
exponentially stable:

Property 4 Ŝ is an exponentially stable fixed point if and only if r
(
DB(Ŝ)

)
< 1.

Proof: Appendix A.12 This property follows from (Garab, Pituk, and Pötzsche,
2020, Thm. 1) by redefining Ŝ to be the origin. Theorem 8 gives the exact expression
for DB(Ŝ).

Theorem 9 is the analog to Theorem 3; Information Feedback Sub-Regularity is
necessary for an exponentially stable fixed point to exist.

Theorem 9 If all fixed points of a model contain aggregate signals such that for any
fixed point signal vector Ŝ there is an entry Ŝi satisfying ŜiPG = Ŝi then Information
Feedback Sub-Regularity is a necessary condition for signal-stable fixed points to exist.

Proof: Appendix A.12
As with signal-stability (Theorem 4), exponentially stable fixed points are locally

unique, because there exists some k such that Bk is a contraction on a neighborhood
around the fixed point. However, it is impossible to say in general if exponentially
stable fixed points are globally unique. There is no exponential analog to Theorem
6 because there is no analog to Lemma 7: the set of signals for which ‖DB(S)‖ < 1
is path connected, but this is not true of the set of signals for which r (DB(S)) < 1.
Indeed, the beauty contest model in Section 5.1 is an example of this; in the multi-
plicity region (Figure 2), there are two exponentially stable fixed points separated by
an unstable fixed point.

Fortunately, even if economists are ex ante interested in exponential stability,
studying signal-stability is still useful for two reasons. First, any signal-stable equi-
librium is necessarily exponentially stable, because the spectral radius of the Fréchet
derivative is bounded by its norm:

r (DB(S)) ≤ ‖DB(S)‖
Second, signal-stability was necessary to prove the global uniqueness result in The-
orem 7, which says that if the Sufficient Idiosyncrasy Condition holds, then there
exists a globally unique fixed point, and it will be signal-stable. Therefore, if SIC
holds, then there exists a globally unique exponentially stable fixed point as well.

C Computation

This appendix formally introduces the Signal Operator Iteration algorithm and de-
scribes a method for computing it.
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C.1 Theoretical Algorithm

The algorithm applying equation (22) is straightforward to describe informally. Begin
by guessing a signal process Sn(L). Then, find the policy function Xn(L) implied
by the signal process by inverting the signal to find the forecast errors W n(L) and
applying the solution method from Section 2. Next, use the assumed relationship
between endogenous variables and endogenous information that is encoded in G(L)
to calculate the implied signal process Sn+1(L). Repeat until the signal process
converges.

In practice, this algorithm can quickly become uncomputable: the signal is high di-
mensional, and the dimension may increase with every iteration of the algorithm. This
is an unavoidable challenge, because the true equilibrium may be infinite-dimensional.
Therefore an additional step is necessary to ensure the algorithm remains computable.
A standard approach is known as the “finite section method” (Böttcher and Silber-
mann, 2012), which truncates a signal process after some fixed number of lags. I
refer to this truncation length as the “order” of the algorithm, and the operator Pτ
represents truncation after lag τ .

Appendix C.3 details how to compute this algorithm in practice. Formally, the
algorithm is:

Algorithm 1 (Signal Operator Iteration) Conjecture a square-summable causal
lag operator polynomial S0(L). Then proceed with iteration n = 0 as follows:

1. Find the autocovariance function Γn(L) implied by Sn(L) using equation (12).

2. Decompose Γn(L) to find the forecast error process W n(L) and moving average
representation An(L)

3. Calculate the policy function Xn(L) from An(L) by Theorem 1.

4. Construct the endogenous signal SnN(L) by equation (15):

SnN(L) = [G(L)Xn(L)W n(L)PG]+

5. Calculate the next signal polynomial Sn+1(L) by combining signals using equa-
tion (10) and truncating to order τ :

Sn+1(L) = (SX(L) + SnN(L))Pτ (74)

6. If ‖Sn+1 − Sn‖ is sufficiently close to zero, conclude that S(L) = Sn+1(L).
Otherwise return to Step 1 with guess Sn+1.
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C.2 Properties of the Approximation

Approximating operators in this way allows for arbitrarily precise approximation of
the solution Ŝ. The signal Toeplitz operators S map `2 → `2, implying the corre-
sponding lag operator polynomials have square summable coefficients, and the infinite
matrix features exponential decay off the main diagonal. When the operator S is ap-
proximated by an operator Sτ which has truncation length τ , Strohmer (2002) proves
that the error to linear operations and inversion can be made arbitrarily small by
choosing a large enough value of τ .

It is practical to select a large value of τ , given that the solution algorithm is
not computationally intensive. Because the solution Ŝ must be square summable, a
strategy for checking whether τ is large enough is to select a small bound b̄ > 0 below
which terms are considered sufficiently close to zero, and then check that all terms s
in the τth block Ŝτ of the computed solution are within the bounds, so that |s| < b̄.
If not, increase the truncation length τ .

This approximation method is well-suited for this problem specifically because
the algorithm uses causal operators. Usually, approximating operators on infinite
Toeplitz matrices also requires embedding into a circulant matrix, which introduces
perturbation error in addition to the truncation error. This is because even though
S is approximated by Sτ , Sτ is still an infinite matrix. However, causal operators
have upper block triangular Toeplitz matrices, so it’s possible to calculate the trun-
cated product of two truncated Toeplitz matrices without any additional operators.
Theorem 10 formalizes this property.

Suppose A,B,C are operators mapping `2 → `2 with conformable blocks: the
blocks of A are k × n, the blocks of B are k × m, and the blocks of C are m × n.
Let T τ (A), T τ (B), T τ (C) denote the τk × τn, τk × τm, and τm× τn block Toeplitz
matrices with the same main diagonal blocks as the infinite operators.

Theorem 10 If operators A,B,C mapping `2 → `2 are causal and satisfy

A = BC

Then the finite approximations T τ (A), T τ (B), T τ (C) satisfy

T τ (A) = T τ (B)T τ (C)

Proof. Partition the operators A,B,C into blocks of arbitrary but equal size. The
equation A = BC becomes

A0 0 0 0 ...
A1 A0 0 0 ...
A2 A1 A0 0 ...
A3 A2 A1 A0 ...
...

...
...

...
. . .

 =


B0 0 0 0 ...
B1 B0 0 0 ...
B2 B1 B0 0 ...
B3 B2 B1 B0 ...
...

...
...

...
. . .




C0 0 0 0 ...
C1 C0 0 0 ...
C2 C1 C0 0 ...
C3 C2 C1 C0 ...
...

...
...

...
. . .
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These matrices are block lower triangular, so the blocks A0, B0, C0 satisfy

A0 = B0C0

If the operators A,B,C are partitioned into τk × τn, τk × τm, and τm × τn
blocks respectively, then T τ (A), T τ (B), T τ (C) appear on the main block diagonals.
Therefore, they must satisfy

T τ (A) = T τ (B)T τ (C)

C.3 Computing the Algorithm

To compute the Signal Operator Iteration algorithm with finite Toeplitz approxima-
tions, I use the following steps. Begin then by conjecturing a causal square-summable
signal process S0 which is approximated by the finite block Toeplitz matrix T τ (S0).
Then proceed by:

1. Find the autocovariance’s finite block Toeplitz approximation implied by signal
process Sn using using equation (12). For j ∈ [−τ, τ ], the blocks in the T τ (Γn)
block Toeplitz matrix are given by

Γj =
τ∑
k=0

SnkS
n
k+j

′

2. Use T τ (Γn) to find the Wold representation: calculate T τ (An) using one of the
methods in Appendix C.4.

3. Given the Wold representation T τ (An), generate the matrix T τ (Ãn) by equation
(31). If T τ (L−1) is the finite approximation to the inverse lag operator (i.e. a
block matrix with identity matrices along the first block above the main diagonal
and zeros elsewhere) and if T (BA1) is the block matrix with BA1 along the main
diagonal (and similarly for BA0) then T τ (Ãn) is given by

T τ (Ãn) =
[(
T τ (BA1)T τ (L−1) + T τ (BA0)

)
T τ (An)

]
LT

where the operator [·]LT is the finite matrix equivalent of the annihilation op-
erator [·]+ setting all blocks above the main diagonal to zero.

4. Calculate the block Toeplitz approximation of the policy function T τ (Xn) by
applying Theorem 1:

T τ (Xn) = T τ (Θ)
[
T τ (Ξ)T τ (Ãn)

]
LT
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5. Calculate the implied approximation of the signal T τ (Sn+1) using equation (74):

T τ (Sn+1) = T τ (SX) + [T τ (G)T τ (Xn)T τ (An)−1(L)T τ (Sn)T τ (PG)]LT

6. If the Euclidean matrix norm of ‖T τ (Sn+1) − T τ (Sn)‖2 is sufficiently close to
zero, conclude that the equilibrium signal process is S(L) = Sn+1(L). Otherwise
return to Step 1 with guess Sn+1.

The finite matrix approximation introduces some error into this algorithm, al-
though this error can be reduced by choosing an arbitrarily large approximation
length τ . This is practical even for large values of τ because only the matrix in-
version in Step (2.) is computationally intensive; the other steps are linear matrix
operations. Concatenation error occurs in Steps (1.) and (2.), but goes to zero as τ
becomes large. Theorem 10 ensures that the remaining steps introduce no additional
error.

C.4 Computing the Wold Representation

How can the Wold representation A(L)W (L) = S(L) be calculated? The innovation
polynomial A(L) and the signal polynomial S(L) both produce the same series of
Ai,t, so they must have the same autocovariance function. This sections describes
two methods to calculate the polynomial A(L). Then the white noise polynomial
W (L) can be found by W (L) = A−1(L)S(L).

C.4.1 Cholesky Method

Autocovariances are related to the Wold coefficients by the operator equation:

. . .
...

...
...

. . .

... Γ0 Γ1 Γ2 ...

... Γ1 Γ0 Γ1 ...

... Γ2 Γ1 Γ0 ...
. . .

...
...

...
. . .

 = L(ACW )L(ACW )′ (75)

where the bi-infinite Laurent operator L(ACW ) is given by

L(ACW ) ≡



. . .
...

...
...

. . .

... A0CW 0 0 ...

... A1CW A0CW 0 ...

... A2CW A1CW A0CW ...
. . .

...
...

...
. . .
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and where CW denotes the Cholesky decomposition ΣW = CWC
′
W .

These are infinite-dimensional operators, but can be approximated with finite
block-Toeplitz matrices. In particular, Caines and Gerencser (1991) prove that T τ (A)
calculated from T τ (Γ) by Cholesky decomposition converges to the true Wold repre-
sentation as τ becomes large.

C.4.2 Yule-Walker Method

Alternatively, the Wold representation can be calculated using the autoregressive
representation instead of the moving average representation, i.e. calculating A−1

instead of A from the autocovariances.
The innovation polynomial A(L) is the Wold decomposition of the signal polyno-

mial S(L), so its inverse A(L)−1 solves the Yule-Walker Equations:
Γ0 Γ1 Γ2 ...
Γ1 Γ0 Γ1 ...
Γ2 Γ1 Γ0 ...
...

...
...

. . .



−(A−1)′1
−(A−1)′2
−(A−1)′3

...

 =


Γ1

Γ2

Γ3

...

 (76)

where the polynomial A(L) is normalized so that A0 = I.
To calculate A−1, use the finite T τ (Γ) and calculate T τ (A)−1 that solves the first

τ Yule-Walker equations (76), and invert to find the MA representation T τ (A).
Evaluating the Information Feedback Regularity Condition 1 requires calculating

the norm ‖GΘΞ(BA1L
−1+BA0)‖. Sometimes this norm can be calculated analytically

(e.g. the Singleton model in Section 5.2) but in most cases it must be calculated nu-
merically. This section demonstrates that the approximation by finite section method
can be made arbitrarily precise by choosing a large enough truncation order τ .

The norm of the τ -order approximation ‖T τ (GΘΞ(BA1L
−1 +BA0)) ‖ converges

to the true norm. This is not true for all properties of an operator (e.g. its trace),
but the norms of truncated Toeplitz operators are known to converge (Böttcher and
Silbermann, 2012):

lim
τ→∞
‖T τ

(
GΘΞ(BA1L

−1 +BA0)
)
‖ = ‖GΘΞ(BA1L

−1 +BA0)‖

C.5 Computing the Regularity Condition

In the associated programming package, the subroutine ifrnorm determines whether
a model satisfies IFR.

Evaluating the Information Feedback Regularity Condition 1 requires calculating
the norm ‖GΘΞ(BA1L

−1+BA0)‖. Sometimes this norm can be calculated analytically
(e.g. the Singleton model in Section 5.2) but in most cases it must be calculated
numerically. Fortunately, calculating this norm by the finite section method can be
made arbitrarily precise by choosing a large enough truncation order τ .
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The method is simple. First, write the operator GΘΞ(BA1L
−1 +BA0) as a product

of large block Toeplitz matrices T τ (G)T τ (Θ)T τ (Ξ)T τ (BA1L
−1 + BA0). The proof of

Proposition 6 gives a concrete example of step. Second, tell a computer to calculate
the matrix norm ‖T τ (G)T τ (Θ)T τ (Ξ)T τ (BA1L

−1 +BA0)‖.
The norm of the τ -order approximation ‖T τ (G)T τ (Θ)T τ (Ξ)T τ (BA1L

−1 + BA0)‖
converges to the true norm. This is not true for all properties of an operator (e.g.
its trace), but the norms of truncated Toeplitz operators are known to converge
(Böttcher and Silbermann, 2012) so long as ‖GΘΞ(BA1L

−1 + BA0)‖ is finite. The
finiteness condition is relevant: there is a the unit root in the Section 5.3 Ξ operator,
so numerical norms will grow with τ because ‖GΘΞ(BA1L

−1 + BA0)‖ = ∞ in that
example.

C.6 Computing the Fréchet Derivative Norm

In the associated programming package, the subroutine soifrechet calculates the
norm of the derivative of a signal operator at a point.

By Corollary 2, the norm of the Fréchet Derivative is

‖DB(S)‖ =
√
‖LmA

PG
Rmε

(GΘ)ᵀQPSLPS‖2 + ‖LmA
PG

Rmε
(GΘ)ᵀQMS

LMS
‖2

Both terms are linear operators. The first term is equivalent to ‖GΘΞ(BA1L
−1+BA0)‖

(see the proof of Theorem 3) so it is calculated with ifrnorm as described in Appendix
C.4. Similarly, soifrechet computes the norm of the second term by the finite section
method. It constructs each linear operator LmA

PG
, Rmε

(GΘ)ᵀ and so forth as a large block
Toeplitz matrix, multiplies them, and then computes the matrix norm.

D Additional Stability Results in the Confounding

Dynamics Model

Consider the following version of the confounding dynamics model introduced in
Section 2.3. The fundamental value of the asset is given by

xt = ut + αut−1

where α > 1 and V ar(ut) = 1. The full information equilibrium of this model is

pi,t = βEi,t[αut]

I use this example to demonstrate two properties: the full information equilibrium
is signal-unstable if β > 1, and the confounding dynamics equilibrium is signal-
unstable even if β < 1.
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The signal vector in this model is Ai,t =

(
zi,t
pt

)
. To demonstrate instability, it

needs to be shown that

‖B(A∆)− B(A)‖S > ‖A∆ − A‖S

if A is the signal operator for any equilibrium, and A∆ denotes an arbitrarily small
perturbation of the signal operator.

D.1 Instability with Full Information

Theorem 3 implies that if β > 1, the full information equilibrium must be signal-
unstable. This is easily demonstrated in the example, by perturbing the object of
the pricing equation, Ei,t[x

∆
t+1]. The model’s operator representation forecasts future

noisy signals, so this change is encoded by perturbing the noisy signal. Therefore,
consider the perturbed signal process A∆

i,t:

A∆
i,t =

(
zi,t + ∆ut−1

pFIt

)
where pFIt = βαut denotes the full information equilibrium price process, and ∆ is an
arbitrary scalar.

The implied price for agents observing this perturbed signal process is

p∆
t = βE[(α + ∆)ut|{pFIt−j}∞j=0]

= βE[(α + ∆)ut|{ut−j}∞j=0] = β(α + ∆)ut

The signal norms are the sums of standard deviations of the difference in signals.
The initial perturbation is:

‖A∆ − A‖S =
√
V ar(zi,t + ∆ut−1 − zi,t) +

√
V ar(pFIt − pFIt ) = ∆

and after the B operators are applied:

‖B(A∆)− B(A)‖S =
√
V ar(zi,t − zi,t) +

√
V ar(p∆

t − pFIt )

=
√
V ar(β(α + ∆)ut − βαut) = β∆

Therefore, ‖B(A∆)−B(A)‖S > ‖A∆−A‖S if β > 1, so the full information equilibrium
is signal-unstable.
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D.2 Instability with Confounding Dynamics

Proposition 3 and Theorem 6 imply that any confounding dynamics equilibrium must
be signal-unstable, even when β < 1. In contrast to the last section, I will demonstrate
instability by perturbing the observed price. Consider the perturbed signal process
A∆
i,t:

A∆
i,t =

(
zi,t

pCDt + ∆
1+θL

ut

)
where pCDt = βθwt denotes the confounding dynamics equilibrium price process, ∆
is an arbitrary scalar, and θ = α−1. wt is the forecast error process in the Wold
representation of xt:

xt = wt + θwt−1

=⇒ wt =
1 + αL

1 + θL
ut

In the math that follows, it is simpler to keep track of Blaschke factors instead of
forecast errors. For example, define the Blaschke factor BCD by

BCD ≡ θ + L

1 + θL

which implies BCDut = θwt. This is helpful because Blaschke factors preserve vari-
ances, i.e. for any Blaschke factor B, V ar(But) = 1.

In order to find the new price p∆
t implied by the perturbation, first I derive the

Wold representation of the perturbed endogenous signal pCDt + ∆
1+θL

ut:

pCDt +
∆

1 + θL
ut = βθwt +

∆

1 + θL
ut

= β
θ + L

1 + θL
ut +

∆

1 + θL
ut = β

θ + ∆
β

+ L

1 + θL
ut = β

ξ + L

1 + θL
ut

where ξ ≡ θ + ∆
β

, which satisfies ξ ∈ (0, 1) for sufficiently small ∆

= β
1 + ξL

1 + θL

ξ + L

1 + ξL
ut = β

1 + ξL

1 + θL
B∆ut

for the Blaschke factor B∆ ≡ ξ+L
1+ξL

. β 1+ξL
1+θL

is invertible, so B∆ut is proportional to
the Wold representation’s forecast error process.

Let z∗i,t denote the components of zi,t orthogonal to current and past B∆ut. Then
the implied price is:

p∆
t = βEi,t[αut] = βE[αut|{B∆ut−j, z

∗
i,t−j}∞j=0]

= βE[αut|{B∆ut−j}∞j=0] + βE[αut|{z∗i,t−j}∞j=0] = βE[αut|{B∆ut−j}∞j=0] + o(∆)
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where the first step is implied by orthogonality, and the second step is implied by
lim∆→0 cov(ut, z

∗
i,t−j) = 0; as the perturbation goes to zero, B∆ut → BCDut which

spans the xt component of zt, but never the noisy yi,t component.

= βαcov(ut, B
∆ut)B

∆ut + o(∆) = βαξB∆ut + o(∆)

Next, consider the norm of the perturbation from the confounding dynamics equi-
librium. The initial perturbation is:

‖A∆ − ACD‖S =
√
V ar(zi,t − zi,t) +

√
V ar(pCDt +

∆

1 + θL
ut − pCDt ) =

∆√
1− θ2

and after the B operators are applied:

‖B(A∆)− B(ACD)‖S =
√
V ar(zi,t − zi,t) +

√
V ar(p∆

t − pCDt )

=
√
V ar (βαξB∆ut − βBCDut + o(∆)) =

√
V ar (α∆B∆ut + β (B∆ut −BCDut) + o(∆))

Does this deviation increase the signal norm? The limit as ∆→ 0 is

lim
∆→0

‖B(A∆)− B(ACD)‖S
‖A∆ − ACD‖S

= lim
∆→0

√
V ar

(
αB∆ut + β

∆
(B∆ut −BCDut)

)
√

1− θ2
(77)

This limit can be calculated analytically, but gets complicated quickly, so I will demon-
strate numerically that it must be > 1. However, it is worth showing analytically that
the β

∆

(
B∆ut −BCDut

)
term neither diverges as ∆→ 0 nor goes to zero as β → 0:

β

∆

(
B∆ −BCD

)
=
β

∆

(
ξ + L

1 + ξL
− θ + L

1 + θL

)

=
β

∆

(
(ξ + L)(1 + θL)− (θ + L)(1 + ξL)

(1 + ξL)(1 + θL)

)
=
β

∆

(
(ξ + L+ ξθL+ θL2)− (θ + L+ ξθL+ ξL2)

(1 + ξL)(1 + θL)

)
=
β

∆

(
(ξ − θ)(1 + L2)

(1 + ξL)(1 + θL)

)
=

(1 + L2)

(1 + ξL)(1 + θL)

where the final step uses ξ = θ + ∆
β

.

Figure 5 panel (a) demonstrates that the confounding dynamics equilibrium must
be signal-unstable, by numerically calculating the proportional change in equation
(77) for β ∈ (0, 1] and α ∈ [1, 2]. The minimum deviation in this range is at approxi-
mately α = 1.55 and β = 1, and the signal perturbation still more than doubles the
signal norm. Indeed, even when considering much larger ranges for the parameters,
the proportional increase always appears to be at least 2.4.

Moreover, the confounding dynamics equilibrium is not just locally unstable, fail-
ing the technical definition of signal stability. Rather, it is globally numerically un-
stable! Figure 5 panel (b) demonstrates, plotting a number of IRFs for the price
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(a) Proportional Effect of Perturbation (b) Signal Process Divergence

Figure 5: Instability of the Confounding Dynamics Equilibrium

The left panel plots the proportional signal deviation implied by the perturbation, for each combi-
nation of α and β parameters. The right panel shows the instability of the confounding dynamics
equilibrium by plotting how the Signal Operator Iteration converges from a small perturbation to
the full information equilibrium.

process. I begin by perturbing the confounding dynamics equilibrium to p∆ (dotted
green line), and then repeatedly applying the operator B. The perturbation is small
(∆ = 0.01), so the signal very slowly begins to diverge but eventually rapidly con-
verges to the full information equilibrium (solid lines with colors shifting from blue
to red based on distance to the final equilibrium.) Because the perturbation is small,
the initial divergence is hard to see, so I omit many iterations from the plot including
the first 20 after the initial perturbation.

Why is this perturbation so explosive even when β is small? When β is near
zero, the information feedback is limited, because forecasts are multiplied by a small
coefficient when reported as prices. However, when agents make their forecasts, they
have to multiply the observed prices by a large 1/β coefficient. So small perturbations
in the price signal can have a large effect on forecasts.

Why was this particular perturbation explosive? Because information feedback
regularity is satisfied, perturbations that are spanned by the equilibrium forecast er-
ror process wt cannot have an explosive effect on signals. So if a perturbation can
disproportionately move the implied endogenous signal, it should have a large com-
ponent that is orthogonal to the history of wt’s. This is why I chose the perturbation

∆
1+θL

; it is orthogonal to the Blaschke factor Lk θ+L
1+θL

for all powers k ≥ 1.

E Time Series in `2

This Appendix describes how to represent a time series in the Hilbert space `2.
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E.1 Time Series as Vectors

`2 is the Hilbert space of square-summable infinite sequences. This space is useful
for representing time series, and provides an intermediate step towards representing
time series as operators.

Consider a stationary time series of the form xt = X(L)εt =
∑∞

j=0XjL
jεt. If εt

is scalar-valued, the vector representation of this time series is

~x ≡


X0

X1

X2

...


Every vector in `2 maps to a stationary time series in this way. The norm of the
vector is its standard deviation.

If εt is matrix valued, ~x is a block vector. But this maps back to `2 by block-
vectorizing.

One reason a vector representation is helpful is that a lag operator polynomial
of the time series is just a block Toeplitz operator times the vector. For example, if
yt = A(L)xt, then

~y =


Y0

Y1

Y2

...

 =


A0 A−1 A−2 A−3 ...
A1 A0 A−1 A−2 ...
A2 A1 A0 A−1 ...
A3 A2 A1 A0 ...
...

...
...

...
. . .




X0

X1

X2

...


The identically distributed time series xt has an autocovariance function γj where

j indicates the order of the autocovariance (i.e. γ0 is the variance, γ1 is the first
autocovariance, and so forth.) In the `2 vector representation, the jth autocovariance
is the inner product:

= 〈~x, Lj~x〉

This generalizes to the matrix-valued case by equation (12).
Why is it useful to represent signals as operators instead of just vectors? One rea-

son is that sometimes the signals need to be right-multiplied, not just left-multiplied.
For example, this occurs when applying different white noise processes to a Wold
representation, or when aggregating signals across islands by PG.
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E.2 Time Series as Toeplitz Operators

The Toeplitz representation collects the time series ~x into a block Toeplitz operator:
X0 0 0 0 ...
X1 X0 0 0 ...
X2 X1 X0 0 ...
X3 X2 X1 X0 ...
...

...
...

...
. . .


With this representation, it can be left- or right-multiplied by other operators. If they
are causal, the operator is lower triangular, and the output will be causal. Revisiting
the example yt = A(L)xt, the first column of the Toeplitz representation will always
be ~y. But if A(L) is causal, then the representation is:

Y0 0 0 0 ...
Y1 Y0 0 0 ...
Y2 Y1 Y0 0 ...
Y3 Y2 Y1 Y0 ...
...

...
...

...
. . .

 =


A0 0 0 0 ...
A1 A0 0 0 ...
A2 A1 A0 0 ...
A3 A2 A1 A0 ...
...

...
...

...
. . .




X0 0 0 0 ...
X1 X0 0 0 ...
X2 X1 X0 0 ...
X3 X2 X1 X0 ...
...

...
...

...
. . .


For a concrete example of a Toeplitz representation, consider the VAR(1) process

yt = Byt−1 + εt. The lag operator polynomial for this process is

yt = Y (L)εt =
∞∑
j=0

BjLjεt

which, per equation (19), has block Toeplitz representation

[V AR(1)] : Y =


I 0 0 0 ...
B I 0 0 ...
B2 B I 0 ...
B3 B2 B I ...
...

...
...

...
. . .


E.3 Connection to Frequency Domain Representations

Consider a time series

yt = Y (L)εt =
∞∑
j=0

YjL
jεt

where εt is unit variance white noise. Sometimes, this time-series is analyzed in the
frequency domain by defining the “z-transform” Y (z):

Y (z) ≡
∞∑
j=0

Yjz
j z ∈ D
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such that Y (z) is an analytic function on the unit disc D = {z ∈ C : |z| < 1}. This
is the approach taken in Han, Tan, and Wu (2022).

How does the Toeplitz operator T (Y ) relate to the analytic function Y (z)? The
matrix representation is

T (Y ) =


Y0 0 0 0 ...
Y1 Y0 0 0 ...
Y2 Y1 Y0 0 ...
Y3 Y2 Y1 Y0 ...
...

...
...

...
. . .


The entries Yj are the Fourier coefficients of the function Y (z). The function Y (z) is
called the symbol of the Toeplitz operator T (Y ). When the symbol is analytic, many
operations on the symbols and Toeplitz operators are analogous. For example, given
analytic functions X(z) and Y (z):

1. Linear transformations satisfy aT (X) + bT (Y ) = T (aX + bY )

2. Multiplication satisfies T (X)T (Y ) = T (XY )

3. Inversion satisfies T (Y −1) = T (Y )−1

Lastly, a symbol is analytic if its Toeplitz operator is block triangular. This is why
analytic functions are useful for representing causal time series.34

34Böttcher and Silbermann (2013) is the reference for this section and is a valuable resource
regarding Toeplitz operators.
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