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1 Introduction

Do menu costs or other models of state-dependent pricing matter for macroeconomics? The answer depends
on the inflation environment. When trend inflation is close to zero, the |Calvo| (1983) model of random
adjustment opportunities gives an accurate approximation of the Phillips curve, if correctly parameterized
(Auclert et al., |2024). On the other hand, when trend inflation is high, state-dependent price setting
is fundamentally different than the Calvo model, and menu costs matter for macroeconomic dynamics.
However, menu cost models are not well understood in this case. Most well-known theoretical results are
derived under zero trend inflation, because it is precisely the edge case where the endogenous frequency of
price adjustment is irrelevant, and the model simplifies (Alvarez and Lippi, 2022). Therefore, high inflation
settings are both where menu costs matter most, and where economists understand them the least.

This paper addresses this gap with three main contributions. First, I derive an analytical solution to the
mean field game (MFG) for a menu cost model with trend inflation. Addressing the entire MFG allows me
to characterize how the value function, pricing decisions, inaction region, and distribution of prices evolve in
response to shocks. With low trend inflation, some of these features are not quantitatively important; |Alvarez
and Lippi (2014)) and (Cavallo et al.| (2024) show that a fixed inaction region is an accurate approximation.
But when there is non-trivial trend inflation, the firm’s value and decisions are more elastic, so the entire
MFG is needed. To derive the solution, I draw on insights from |Alvarez et al.| (2023), who give a linear
representation of the MFG in response to small shocks. Their assumption of zero trend inflation implies that
they can ignore the “reinjection” of price-resetting firms to the distribution of price gaps, which allows for
a simple solution to the Kolmogorov Forward Equation (KFE). However when there is trend inflation, this
reinjection matters. To handle it, I apply results from |Adams| (2025)), which illustrates how the dynamic
distribution determines the endogenous reinjection process.

Second, I tackle another challenge facing menu cost models: they are relatively intractable. Their relevant
state variable is an infinite-dimensional distribution of price gaps, which means that they are usually solved
numerically and analyzed in partial equilibrium. To be useful for policy analysis, it would be valuable to
have a representation that fits neatly in existing general equilibrium models, without introducing too much
additional compleXityE To this end, I derive a low-dimensional discrete time approximation to the MFG
solution: the primary eigenvalue decomposition (PED). Each component of the full solution is associated
with a particular eigenvalue in the KFE, but in practice only a few eigenvalues matter quantitatively. I show
that the PED, which uses just the most important eigenvalue, is a reasonably accurate approximation to the
full solution.

The PED is much more tractable, while retaining the realism and interesting features of the full solution.

In particular, the PED implies a dynamic Phillips curve that nests the traditional New Keynesian Phillips

lIndeed, this is why the Calvo model became popular, compared to alternative models of staggered price-setting such as
Taylor| (1980).



curve:

Ty = Amct + BEt[ﬂ’t.}rl} +€(9_1Ft — BEt[FH-l]) (1)

Calvo term FPA correction

The “Calvo term” is standard, except that the slope A is not given by the usual Calvo calibration. Menu
costs however introduce an additional term, which depends on the Frequency of Price Adjustment (FPA).
When there is zero trend inflation, the correction coefficient € is also zero, and equation reduces to
the New Keynesian Phillips curve, validating the numerical findings from |[Auclert et al.[ (2024). However,
when trend inflation is nontrivial, the FPA dynamics matter for inflation dynamics. This is consistent with
existing knowledge: empirical and simulation results agree that the correlation between inflation and the
FPA is much stronger at high inflation rates]|

Why does the FPA show up in the Phillips curve? Because of the price-setting selection effect (Golosov
and Lucas Jr.,2007): economy-wide inflation depends on the distribution of firms that change prices. |Adams
(2025) shows that the path of the FPA encodes all of the relevant features of the distribution of firms. Thus
FPA dynamics are sufficient to capture time-variation in the selection effect.

Third, because the PED is so tractable, I show that it can be easily embedded in general equilibrium
models and used for policy analysis. Since the PED equations’ coefficients are known analytically from
the model’s microfoundations, they can be easily calibrated using pricing statistics. Doing so does not
require solving the full non-linear model. This result is valuable even for practitioners studying low-inflation
economies: while it was already known that the Calvo Phillips curve was an accurate approximation of a
low-inflation menu cost economy, it was unclear how to calibrate it. After calibrating the PED, I embed it in
an otherwise textbook New Keynesian model, in order to analyze dynamics and monetary policy in general
equilibrium.

The PED reveals how menu costs amplify inflationary shocks relative to a Calvo structure. They do
so through two channels: increasing the slope of the Phillips curve, and increasing the direct effect of the
FPA on inflation. The Phillips curve effect is second-order when trend inflation is zero, consistent with
the wide acceptance of using zero trend to approximate relatively low inflation economiesﬁ However, the
effect of trend inflation on the FPA coefficient is first-order at zero. This is because while trend inflation
has second-order effects on firms’ decisions, it has first-order effects on aggregation. Therefore, in general
equilibrium, modest rates of trend inflation lead to substantially amplified dynamics relative to the driftless
calibration. For example, in the simple New Keynesian-style model, raising the annual trend inflation rate
from 0% to 5% increases the CIR of inflation to cost shocks by roughly one fourth.

The PED easily demonstrates how menu costs affect optimal monetary policy. Consistent with the

(Golosov and Lucas Jr., |2007)) story, menu costs cause the economy to act as if price are more flexible

2See for example |Gagnon| (2009); Nakamura et al.| (2018); |Alvarez et al| (2019); Montag and Villar| (2025)); |Gagliardone et
al] (2025).

3For example, Nakamura et al.| (2018) and |Alvarez et al.| (2019) correctly argue that zero trend inflation accurately approxi-
mates the Phillips curve under the low inflation rates experienced by rich countries at the beginning of the 21st century, because
the effects on firms’ decision rules are second-order.



than in a Calvo model. This yields a textbook implication: monetary policy optimally becomes more
aggresive, because real shocks have larger effects on inflation. But trend inflation changes the calculus. As
trend inflation increase, the Phillips curve slope increases, so optimal policy becomes even more aggressive.
Moreover, trend inflation amplifies the inflationary feedback through the FPA. Thus accounting for the
endogenous price adjustment increases the optimal monetary policy response even further.

Within the extensive menu cost literature, this paper is closely related to a few ongoing lines of inquiry.
Blanco et al.| (2024) work to address the tractability of menu cost models by developing a theory in which
multi-product firms choose how many (but not which) of their prices to adjust. This assumption eliminates
the need to track the distribution of firms, allowing for exact aggregation with a simple non-linear Phillips
curve, in which the FPA appears. As an alternative to approximating or simplifying the model, [Karadi et
al| (2025) study optimal monetary policy in the full nonlinear menu cost setting, focusing on the response
to large shocks. They also find that the endogenous FPA affects optimal policy; when inflation is high and
the Phillips curve is steep, it is optimal for monetary policy to take advantage of the heightened slope and
respond aggressively.

The remainder of the paper is organized as follows. Section [2|lays out the model. Section [3| derives the
analytical solution to the pricing block. Readers who prefer to avoid the partial differential equations should
skip to Section[4 which introduces the PED. Section [f] evaluates the approximation accuracy quantitatively.
If the reader is a practitioner who simply wants to see the approximation summarized and embedded in
a linear general equilibrium model, they should skip to Section [} which studies the quantitative effects of

menu costs and trend inflation on dynamics and monetary policy. Section [7] concludes.

2 General Equilibrium Model

I consider a general equilibrium model most similar to |Alvarez et al.| (2024), where firms face menu costs and
idiosyncratic shocks, leading to state-dependent price adjustments. The economy consists of a representative

household, a central bank that conducts monetary policy, and firms facing price-setting frictions.

2.1 Households and Monetary Policy

The representative household maximizes lifetime utility:

| e {C(ﬂwl% o L(t)lt?]dt’ Y
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where C(t) is consumption and L(¢) is labor supply. Consumption is a CES aggregate of differentiated goods:

n

Clt) = < /O L A0 "nldi) (3)




where A;(t) is a stochastic preference shifter, and n > 1 is the elasticity of substitution.

The household’s budget constraint is given by
M(0) + /000 Q) (W (t)L(t) + D(t) — P(t)C(t) — R(t)M(t)] dt > 0. (4)

where W (t) is the nominal wage, D(t) are firms’ profits paid as dividends, P(t) is the price level, R(t) is the

s)ds

nominal interest rate, and Q(t) = e~ Jo B( is the price of a nominal bond.

The first order conditions for the household’s problem are
1
e C)7C = AgrQM)P(t) e P'xL(t)7r = AgrQ(t)W(t) ()

where Agg is the household’s Lagrange multiplier for the budget constraint. These first order conditions

imply an intratemporal labor supply equation:

P(1)%L(t)7 C(1)7¢ = W(1) (6)
and an intertemporal Euler equation
R(t) —7(t) —p = ach; (7)

where 7(t) = % denotes the inflation rate.
A central bank sets the nominal interest rate R(t) by a Taylor-type rule, as a function of the state of the
economy.

The household and monetary policy side of the model is standard, and will be discussed further in Section

[(] when the general equilibrium economy is analyzed. The firm side of the model is discussed in detail next.

2.2 Firms

Firms produce differentiated goods using labor as the only input:

Yi(t) = Li(t) (8)

where Z,(t) represents stochastic idiosyncratic inverse productivity. Z;(t) represents a quality shifter, so it
is assumed to be perfectly correlated with the preference shifter, i.e. Z;(t) = A; (t)E| Z;(t) is i.i.d. across
firms, following a Brownian motion with variance 2v.

Firms are monopolistic, so they set prices, but face menu costs. It is common to represent the firm’s

problem using a second order approximation around their frictionless optimal price. In this case, the profit

4As in [Midrigan| (2011)), this assumption conveniently reduces the state space relative to |Golosov and Lucas Jr.| (2007).



lost in every period is the quadratic Bg;(¢)?, where B = W and 7 is the price elasticity of demand. I

)

adopt the language of |Alvarez et al. (2024) gi(t) denotes the log “markup gap”, which is given by

gi(t) = log Pii@) — 9)

Zi(OW

where p is the frictionless optimal markup. From this markup gap, it is useful to construct the firm’s state

variable as a log “price gap” x;(t):
a;(t) = log P;(t) —log Z(t) —log W (t) — (10)

where W (t) is the long-run wage trend. In the inaction region log P;(t) is constant, log Z;(t) has no drift,
and log W (t) grows at rate 7, so x;(t) will have drift E[dz;(t)] = —7dt.

Thus the markup gap is related to the price gap by
gi(t) = z;(t) — MC(t) (11)

where MC(t) = logW (t) — log W (t) is the deviation from trend for the average log marginal cost across
firms, because log Z;(t) is mean zero. To a first order approximationﬂ the economy-wide price index is
log P(t) = fol log P;(t)di, so the price level can be written from the average price gap X (t) = fol log x;(t)di
as

log P(t) = X(t) +log W (t) + p (12)

2.3 The Price Setting Problem

The firm faces a “Calvo-plus” pricing problem (Nakamura and Steinssonl, [2010)), which nests the simple menu
cost case (Golosov and Lucas Jr., |2007)).

If the firm wishes to change its price, it must pay real cost U. However, it also receives Calvo-style free
adjustment opportunities at rate . With this setup, the firm’s problem is characterized by its idiosyncratic
state variable — the price gap z;(¢) — and the aggregate marginal cost M C(t). From here on, I will drop the
1 subscripts.

As usual, menu costs imply an inaction region for firms. The firm chooses lower and upper bounds for
the price gap x(t) and Z(t). Whenever its price gap x(t) reaches these bounds, or if the firm receives a
random free adjustment, then it resets its price gap to some optimal x*(¢). The firm’s problem is to choose

the profit-maximizing path for x*(¢), z(t), and Z(t).

5Reader beware: many papers refer to g;(t) as the price gap, and treat it as the firm’s state variable.
6The true CES price index is P(t)1=" = fol log P;(t)'~"di.



Inside the inaction region, the firm’s Hamilton-Jacobi-Bellman (HJB) equation is given by
pv(z,t) = =B (z — MC(t))? 4 0y (x, t) — 70pv(w, t) + v2v(z, t) + ¢ (v(z* (1), 1) — v(z, 1)) (13)

where 7 is the trend inflation rate, and 2v is the variance of the productivity process. The boundary

conditions for this problem are:

Value-matching v(z(t),t) = v(x*(t),t) + ¥ = v(Z(t),t)
Reset optimality Ozv(x*(t),t) =0

Smooth-pasting Ozv(z(t),t) = 0 = dv(Z(¢),1)

Terminal condition v(x,T) = brerm. ()

2.4 The Kolmogorov Forward Equation (KFE)

When marginal costs are constant, the distribution of price gaps h(x,t) evolves according to the Kolmogorov

forward equation:
Oth(w,t) = vOih(z,t) + 7Oh(x,t) — Ch(x,t) + F(1)6(x — 2*(t)) (14)

where F(t) is the frequency of price adjustment (FPA), and §(-) is the Dirac delta. The boundary conditions
for this PDE are:

Absorbing boundaries h(z(t),t) =0 h(z(t),t) =0
FPA determination F(t) = vo,h(z(t),t) + Th(z(t),t) — vOLh(Z(t),t) — Th(Z(t),t) + ¢
Initial condition h(z,0) = Ginir.(T)

Finally, there is an aggregation equation:
X(t) = / oh(z, t)dz (15)
which determines the average price gap X (t).

3 The Mean Field Game

This section derives the equations governing the pricing mean field game in response to small shocks, and

solves them.



3.1 Derivation of the Mean Field Game for Small Shocks

Consider the standard aggregate nominal cost shock: raising every firm’s marginal cost enters the mean
field game (MFG) through the profit function in the HJB. This is a distinction between the price gap and
markup gap representations; the latter is common and is how |Alvarez et al.| (2023)) represent the model.
When the markup gap defined in equation @ is used as a state variable, then a nominal cost shock shifts
the distribution of state variables directly. In that case, a permanent marginal cost shock will enter the KFE
instead of the HIB[]

Specifically, I consider a small unanticipated change to the path of aggregate nominal marginal costs

MC(t) modified by a small scalar k. This shock affects the HJB through the profit function:
po(z,t) = B (z — kMC(t))? + 8yv(z, t) — T00(x, t) + v02v(x,t) + C (v(z* (), 1) — v(x, 1))

The shock does not affect the distribution h(z,t) directly. Instead, the distribution evolves according to
the KFE, respecting the boundary conditions. This evolution depends on the critical points z(t), Z(t), and
x*(t), which are endogenous responses to the shock through the HJB.

Denote the solution to the MFG with steady state initial condition and the x-scaled path of aggregate
shocks as the functions h(z,t, k), v(z,t, k), z(t, k), Z(t, k), and x*(¢, k).

To study small shocks analytically, we will solve for the derivative of the MFG solution with respect to
the shock. When the solution functions are written with hats, they denote derivatives around the no-shock

steady state:
h(z,t) = 8.h(x,t,0) O(z,t) = Ogv(x, t,0) 2(t) = 0,x(t,0) z(t) = 0,%(t,0) T*(t) = 0kz™(¢,0)

Proposition [1| shows that the derivative functions are themselves solutions to a MFG with a convenient
form. Throughout, I denote steady-state values with a subscript ss: the steady-state distribution is hss(x),
the value function vgs(x), the frequency of price adjustment Fi,, and the critical points z¥,, z.,, Zss. For

brevity, in integration limits, domain specifications, eigenfunction arguments, and coefficient subscript labels,

I suppress the subscript and write z, Z, etc.

Proposition 1. The derivative functions corresponding to the MFG with small aggregate shocks are them-

selves solutions to the following MFG:

po(x,t) = 2Bz (—MC(t)) + 0y0(x,t) — 7O 0(x, t) + vO20(x,t) + ¢ (0(x*,t) — 0(, 1)) (16)
O(z,t) = 0(7,t) = 0(z*,t) (17)
Dp0(2, 1) 4+ 0245 (2)2(t) = 0,0(Z, 1) + 02054 (T)Z(t) = Dp0(2*,t) + O2vss(x™)2* () = 0 (18)

7A disadvantage of using the markup gap as a state variable is that transitory marginal cost shocks affect both the HJB and
KFE, complicating the analysis. This is why I adopt the price gap as the state variable.



Proof: Appendix

3.2 Conditional Solutions to the MFG

This section derives the distribution A(z,t) and value function #(z,t) as conditional solutions to the MFG.

Lemma [1] solves the HJB PDE conditional on the path of aggregate prices, while Lemma [2| solves the

KFE PDE conditional on firms’ pricing decisions. The complete solution will necessarily combine these two

conditional solutions; they are valuable intermediate steps that are straightforward to derive.

Lemma 1. The conditional solution to the HJB is the infinite sum

= Z@n(:ﬂ t)

where

T T
Bul2,1) = Orren(®) / e 022 (T2 (M O(r))dT + ©0(3) / e e (e, 7)dr
t t

and

71' Vn7T
AHJIB.n = P+C+4

2 —
YHIB(T,Y) = = e (=) gip ( _( > sin (mr_(yx))
T—2x T P

Onon(z) = —QB/ YrIB. (T, y)ydy
x

@v,n(x) = _C/ ’YHJB,n(x,y)dy + Vay’yHJB,n(xag) - Vay’yHJB,n(xai)

Proof: Appendix

The conditional solution to the KFE is more complicated. This is because Property [3| only gives a direct

solution for the distribution iz(x, t) on the interior of the inaction region. But the distribution depends on

the FPA, and the FPA depends on properties of the distribution at the boundaries. This is because the



Green’s function always satisfies the zero boundary conditions.

To address this, I follow a standard “lifting function” strategy. Because the KFE is linear, it is possible

to separate into components that solve each non-homogeneous term in the PDE. First, an

“Interior” term

ing is the component of the distribution that responds to the flow of resetting firms and satisfies the

zero boundary conditions. Second, a “critical-point” term ﬁcrit is the component that satisfies the non-

homogeneous boundary conditions and is unaffected by the FPA. This second term also includes the effects of

the reset point changing over time, which is useful to address without the Green’s function for computational

reasons.

To state the KFE solution, define the lifting functions (derived in Appendix @):

67“2(1*95) _ 67’1(1*?5) 67“1(1*@ _ 67’2(1’*@
HQ(I) = e—’!‘gé _ e—’l‘lz ’ Hj(z) = 67‘26 — erlZ
. VWN(x*)
=N e
L *
xTr>x
e (o)

where ¢ = & — z is the length of the inaction region. The characteristic roots are
ri2 = (=7 V7% +4v()/(2v)
and the auxiliary functions are

Yp(x) = ree (*72) _ g era(@—z) Yr(x) = roem @7 _ p er2(z=2)
Wi (2%) = ¢r(@")PR(x") — ¥ (2")dr(2")
Lemma 2. The conditional solution to the KFE is
Wz, t) = hesie(2,t) + hine (2, 1)
where the critical-point component is

herio(2,1) = =R, (2)2() Hy () + Wy (2)2(8) He () — Fuud™ (1) T~ (2)

with Hy, Hz, and Jy- defined in 7, and the interior component is

mtxt thtnxt

(25)



Bint,n(2,t) = e Arrpnt (h;s(g)i(o)waﬂﬂl(x) - h;s(j)i(o)wH,@n(x) + Fssj*(o)wln(xw

+ / N (g (@) () 4 Fas” (7)) + Koy )2 (1) @t,8(0) — W (@) (7)1, )7

(28)
and
72 vn?n?
)\KFE,nEC—I—E—i—T, (=7 —z
reale) = e 070 () () -

wF,n(fE) = ’YKFE,n(xal'*) WJ,n(QC) = / 'VKFE,n(xay)Jz*(y) dy

v v

WH g0 (T) Oy Yk FE (T, T) Wz (T) = Oy Yk FE (T, T)

AKFEn AKFEn

Proof: Appendix [A-3]

3.3 Aggregate Solution to the MFG

This section derives the integral equations describing the dynamics for aggregate variables solving the MFG.

The frequency of price adjustment F(t) decomposes into critical-point and interior components:

F(t) = Fcrit (t) + Ent (t) (30)

The critical-point component depends on the levels of the boundary locations 2*(t), Z(t), Z(t). The interior

component depends on the time derivatives (or in discrete time, differences) of these boundaries, and further

00
n=1

decomposes into eigenfunctions: Ein(t) = 0%, Fiu.n(t). The aggregate gap X (t) is expressed directly in

terms of levels without this decomposition.

The critical-point coefficients for a (no n subscript) are defined from the lifting functions in Lemma

o = —Fosv(Jpe () = 3 (T) 9o = hig(@)v(Hy(z) — Hy(T)) vz = hi(B)v(Hy(z) — Hy(T))

The interior coefficients for F' depend on the eigenfunction index n, and are defined from the corresponding

w. n(x) function (defined in Lemma [2)):
Garrn = Fast (T,0(2) = @50(2))  Parin = W@l (T () = Dy 5.0(D))

Pz n = h;s(‘f)y (wlfl,i,n(ﬁ) - w}{,i,n(j)) PEn =V (wlF,n(ﬁ) - w%‘,n(i‘))

The coefficients for X in the levels representation depend on the eigenfunction index n and are derived from

11



the Green’s function (see Lemma |3)):

T
§F,n5/ YxrEn (T, 2")dx
x

xr
fac*,n = Fss/ xay’YKFE,n(CL'7£L'*)dCU
T
T

Eom = —yh’ss(g)/ 20y Yk FrE (T, 2)dT €s.n = —Vh;s(f)/ 2Oy YK FE (T, T)dx

x x

z

The remaining coefficients for the value function and boundary dynamics are:

1 1

B — * R — Y
Xa*,n 8%“55(:1:*) MC,n('r ) ™ ,n a%vss(m*) u,n(m )
Lo, (@) E ~_o),,(@)
== z Eon = ——— z
Xz,n a%vss(g) MCn\£ 'T,n 8%1)55(&) v, \=
1 , 1

- = - T _ = - ! T
Xzn = an%vss (i’) eMC',n(m) —zT,n = agvss (f) G‘)'u,n<‘7")

Theorem 1. In a solution to the MFG, the aggregate variables are characterized by the following integral
equations.

The value function at any point x is given by backward integrals in the HJB eigenfunctions:

bz, t) =Y dn(z,t) (31)

n=1

T T
on(251) = Onron () / e A5 (T (LN CO(r))dr + O () / et D* e (32)

t t

The optimal reset point 3*(t) follows from smooth pasting and decomposes into eigenfunction components:

00 T T
) =Y an(t) () = Xx*,n/ e msmn (T (MO (7)) dr + Emn/ e Aop (T (% )dr
t t
(33)
The other critical points &(t) =Y, &, (t) and Z(t) =, Z,(t) have analogous forms with coefficients Xz n,

= _ =
Sxns XEn, SEn-

The aggregate price gap is given by a forward integral in levels of the boundary locations:

X(1)= 3 %) (39
Xt = [ €M) (G B(7) e (1) + E0n) = €5 (r)) d (3)

12



The FPA decomposes into critical-point and interior components:

Ferit(t) = o 2" (t) + 2(t) — 022(t) (36)

Flga(t) = e Mt (g 185 (0) 4 00r,n2(0) — 9302 2(0))

t
+ / e AP (G B(7) s @ (7) + G (7) = P (7)) dr - (37)
0

Note that the FPA interior component depends on the time derivatives of the critical points (¥, @', ')

rather than their levels. The aggregate gap X uses a direct levels representation.

Proof: Appendix [A]]

The integral equations in Theorem [I| can be solved directly in “sequence space.” Alternatively, by the
Fundamental Theorem of Calculus, these integral equations imply differential equations for the n-indexed
components which can be solved recursively subject to initial and terminal conditions using a standard
method such as . Either way, the aggregate quantities of interest are recovered by summing:
() = 300 @t (t), X(t) = 3.°°, X,,(t), and similarly for the other variables.

To build more intuition for how the aggregate price gap responds to shocks in the menu cost model, Fig-
ure [1| pairs the impulse response of the aggregate price gap X; (right panel) with the underlying distribution
perturbation iL(.’E, t) (left panel). The distribution perturbation shows how a marginal cost shock propagates
through the cross-sectional distribution of price gaps. As firms with large price gaps adjust, mass flows from

the tails back toward the reset point, and the aggregate price gap decays.
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0009F ~ oo - mc|

0.008
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5

Price gap x 02 10 Time (months) 0 2 4 6 8 10
Time (months)

Notes: The left panel plots the distribution perturbation ﬁ(x,t) after a marginal cost shock. The right panel plots the
aggregate price gap response X (t) and the exogenous marginal cost path MC(t).

Figure 1: Analytical Perturbation to the Distribution and Aggregate Price Gap

13



Figure [I] demonstrates Theorem [Ifs solution with a simple example. Firms face an unexpected increase
in nominal marginal costs that decays slowly over time. The left panel plots the perturbed distribution
iz(x, t), which represents the marginal change in the firms’ distribution from the shock. On impact, there is
a marginal increase in all critical points. This means that on the steady-state interval [z, Tss] where fz(x7 t)
is defined, the initial density changes precisely at the original critical points and is flat everywhere else. The
density fz(a:, 0) is negative at z, because additional firms leave the interval and reset prices when the critical
point rises. Analogously, the density is positive at Z, because firms that would have reset no longer do so.
The density is unusual at the critical point *: it is dipole-like, with a negative jump immediately followed by
a positive jump, matching the shape of the —§’(x — z*) termﬁ Despite this non-continuous initial condition,
iz(x,t) evolves smoothly for ¢ > 0, with mass accumulating in the positive region as firms choose higher

prices, raising the average price gap (right panel). Over time, the function converges back to zero, consistent

with the full distribution returning to the steady state.

3.4 Discrete Time Approximation

The true continuous time model is valuable for analytical characterization, but a discrete time model is often
more tractable for many applications. This section derives a discrete time approximation of the continuous
time solution by discretizing the integrals in Theorem [1l Throughout, At denotes the time step size for the
approximation, which I set to At = 1 in the final representation. The approximation treats time-varying
terms (marginal costs, boundary locations, aggregate values) as constant on each time step, and integrates

the exponential kernel e~*»7 exactly. Define the ezact integration weight for eigenvalue X at step size At as

At 1— efAAt
s(\) ;/0 e Mdr = — (38)

When At =1, let sgypn = Ss(AwsBn) and Skpg.n = §()\KFE,n)E|
In Proposition Vt* denotes the discrete time approximation of the reset value o(z*,t). Values at
the other boundaries Kt and V,; are similarly defined. Written in terms of these discrete time values, the

derivative value-matching conditions (|17)) are
Vr=V,=V. (39)

As before, these values are sums of n-indexed components for each eigenvalue, as are the other variables:

o0

oo R 0

fl o _ N = -~

Vt - Z n,t Zt - Yon,t Vi= Z Vn,t
n=1 n=1

n=1

8 Appendix describes this initial condition in greater detail.

9The exact integration weight is approximately equivalent to the familiar Riemann weight At, because for small ), () ~ At.
However, the exact integration weight is more accurate for larger A, where exponential decay over the At time interval is
nontrivial. This distinction matters for large n, so using exact integration weights is useful for both accuracy and numerical
stability.
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The aggregate gap is a sum of eigenfunction components, while the FPA decomposes into critical-point and

interior components:

o0 o0
Xy = E Xt Fy = Fope + E Fintnt
n=1 n=1

As in the continuous time case, Z; is a vector of the aggregate variables, Z;+ contains the critical-point
components (for F'), Z,; contains the nth eigenfunction components, and z, is a vector stacking these in

ascending order.

Proposition 2 (Discrete time MFG dynamics). The discrete time approximation satisfies the system of

equations

*
/N

ot = SHIBn (Omon (™) (~MCii1) + Oy pn(z¥) ‘7{11) +e M (40)

Vi =<uiBn

/N

Oucn(z) (~MCur) +O0n(@) Vi ) +e 0080 7, (41)

Vit =SHIB R

i

N

GMC,n(i') (_MCtJrl) + Gv,n(f) ‘2511) + e_)\HJB’" vn t+1 (42)

=CHJBn

>
3%
-
~~

Xarin (“MCi1) + B Vi ) #7005 5 1y (43)

= <8 (e (“MCri1) + Zan Vi) + €20 &, (44)

&>
3
T~
~~

Tnt=SHIBn (X@n (—MCiy1) +Zzn thH) +e T MIB T (45)
Xt = SKFEnR (fF,nFt + & Ty 4+ oy — ff,ni‘t) + e KFBn X (46)
Acrit,t = Qo= &} + Paly — Pzt (47)

Fintnt = SKFE.n (SOF,nFt + Purt n AT} + Ppr n AZy — (Pi’,nAi't) FeTANFEn [ (48)

where A} = &F — &, AZ, = &, — 2,4, and ATy = Ty — Ty are discrete time approzimations to ¥ (t),

2'(t), and 2'(t).

Proof: Appendix [A75]
Together, the dynamic equations in Propositions [2| define a partial equilibrium for firms and their pricing

decisions, which Definition [I] formalizes.

Definition 1. A discrete time partial equilibrium of the pricing side of the economy is a bounded infinite
sequence of price gaps Xt, boundaries &},%,, T, values Vt*,ﬁt,Vt, and flows 13',5, that satisfy the dynamic

equations in Proposition[3, given a path for marginal costs MC.

In practical terms, Proposition [2| shows that the pricing problem and associated dynamics are entirely
characterized by a system of linear dynamic equations in discrete time. While PDEs may be uncomfortable,

systems of dynamic linear equations are bread-and-butter for macroeconomists. The system is infinite
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dimensional, but with a large truncation on the eigenseries index n, and a sufficiently small time step At,
the system can be solved to find the analytical solution with arbitrary precisionm Moreover, this can be
done with standard macroeconomic model solvers using simple matrix algebra.

Still, an arbitrarily large system of equations is unwieldy. Next, I show that the system can be well
represented by only a few dimensions, and that this approximation is relatively accurate under a standard

calibration.

4 The Primary Eigenfunction Discretization

The analytical solution to the mean field game is infinite-dimensional. This section shows how the true
solution can be easily reduced to a low-dimensional discrete time approximation, the Primary Figenfunction
Discretization (PED).

Each eigenvalue indexed by n is associated with an eigenfunction. These eigenfunctions form a basis
for functions on the interval [z,Z]. Thus, the distribution E(x,t) can be written as a linear combination
of these eigenfunctions. Each eigenfunction explains a share of the behavior of ﬁ(x,t) over time. The
primary eigenfunction explains the most. This eigenfunction is not necessarily associated with the “dominant
eigenvalue” (Hansen and Scheinkman) [2009), i.e. the largest eigenvalue which describes dynamics at the
longest horizons[]

The PED is an approximation of the true solution. Before defining it, let us ask: What properties should

the PED have in order to be a good approximation?

4.1 Desireable Properties of an Approximate Solution

Consider any finite-dimensional approximation to the true solution. There are many ways to craft such a
thing, but in order to accruately approximate the true solution, it should inherit a number of salient features.
Imposing these properties will discipline the approximation.

First, a crucial property of the true solution is the long-run neutrality of monetary shocks. In the model,
a permanent increase in nominal marginal costs should increase nominal prices one-for-one in the long run.

I formalize this property as follows:

Definition 2. An approximation to the model solution satisfies long-run neutrality if, in response to a

10For further guidance, see the Computational Appendix |ﬁl

Hlndeed, in the case of zero trend inflation, |Alvarez and Lippil (2022) and |Alvarez et al.| (2023) show that the dominant
eigenvalue is irrelevant for the aggregate effects of cost shocks, because it describes symmetric (even) changes in the value
function, while a cost shock induces an anti-symmetric (odd) change.
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permanent marginal cost shock MC(t) = k for t > 0, the following limits hold:

tlggo X, =k (49)
tll)rgo =k (50)
Jm 2, =k (51
tl;rrolQ It =K (52)

Second, the model also has a number of implications for the dynamics of the FPA. These are more
mathematical. Let n,pprox denote a finite set of eigenvalue indices that are used to approximate the full

solution. In such an approximation, let the FPA be given by

Ft = Fcrit,t + Z Fint,n,t

NENapprox

Ent,n,t =SCKFE,n (@F,nﬁt + ‘px*’,nAir + ‘Pg’,nAit - @iﬂ,nA'%t) + eiAKFE’" Aint7n,t—1 (53)

where

@F,n = QuPFn vn

Equation only differs from equation by replacing ¢F, with ¢, which allows for control of the
feedback of the aggregate FPA F} to the finite components Fmtyn,t. With this notation, desirable full solution
properties of the FPA are:

Definition 3. An approzximation to the model solution satisfies FPA-consistency if, in response to a
permanent marginal cost shock MC(t) = k for t > 0, the following hold:

lim £, =0 (54)

t—o0

Fu= (2] 5 0@+ 1@ + 5 (000) ~ ) ) (55)

and if in general the aggregate feedback is

oo
Z Prn = Z Yrn =0 (56)
NENapprox n=1

Equation is simply long-run neutrality for the FPA. Equation says that the discrete time
impact effect is approximately equal to the continuous time impact effect. Corollary [I] derives the given
expression from the integrated average FPA over the initial time period; it is an approximation of the
true effect, most accurate when the time interval and 7 are small. Lastly, equation imposes that

finite-dimensional approximation does not alter the aggregate feedback effect of the FPA, which could be
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potentially destabilizing, especially because ¢, is not a convergent series.

4.2 Defining the Primary Eigenfunction Discretization

Before finding the PED, I must first define what it means to approximate the solution with a single eigenfunc-
tion. The discrete-time equilibrium relations collected in Proposition [2] are not all satisfied when restricting
to one eigenfunction. But the full proposition is broken down into subcomponents associated with each n-
indexed eigenvalue. A single-eigenfunction approximation satisfies the relevant nth subcomponent equation
for the chosen eigenfunction.

In order to clean up notation, if a variable is written with a time subscript but without a hat, then it
denotes the PED. Additionally, to comport with convention, I use p’s to denote PED price gap variables.
Thus p; denotes the (log) deviation of the price level from trend. To be specific:

Definition 4. A discrete time single-eigenfunction approximation of the pricing side of the economy
is an infinite sequence of price gaps p:, boundaries pf,gt,ﬁt, values V;*,V,, V., and flows F; such that for
etgenfunction index n

bt X Xn,t

* o ~ — 2
by X xn,t Qt X gn.,t Pt X Tt

Vi =Vou V,= Kn,t V=V

)

Fy = Foiee + Fineont

which also: satisfy the dynamic equations , , , and ; satisfy the dynamic equations , ,
, , , and up to scale; and obey the long-run limits , , , ; given a path for

nominal marginal costs MCy.

Definition [] only imposes that Proposition [2s dynamic equations determining nominal variables only
hold up to scale, which introduces enough degrees of freedom in order to ensure that long-run neutrality is
satisfied. This is because any discrete-time approximation of the continuous-time model will not precisely
satisfy long-run neutrality, even when all eigenvalues are accounted for. Scaling aside, Definition [4] has the
same number of equations as unknowns, but hides a shortcut: I do not impose that the dynamic equation
associated with V;* holds. This is because the approximation is over-determined. Of course it is: otherwise
it would be a complete solution. Specifically, the equations describing the values at the boundaries (,
, ) cannot generally all hold while also respecting the value-matching condition . Thus there is
flexibility in choosing which equations should hold in the approximation. This decision is innocuous when
there is zero trend inflation, in which case any three of these equations imply the fourth (Alvarez et al. [2023,
Lemma 4), but when 7 # 0, a selection must be made. I choose to enforce value-matching but not equation

for two reasons. First, this choice is more tractable, as dropping the value-matching condition would
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introduce an additional forward-looking equation to the PED system in Theorem [2| Second, this choice is
consistent with the validation exercises conducted in Section [El

To determine the primary eigenfunction and eigenvalue, a criterion is needed in order to determine how
well the choice of a particular eigenfunction approximates the true solution. To do so, let C denote a criterion
vector, which is some lag operator polynomial mapping some type of process into an equilibrium outcome in
the discrete time representation of the true model. For example, in the true model there is some lag-operator
polynomial IRFp(L) which represents the impulse response function (IRF) mapping an unanticipated real
marginal cost shock to the price level by p, = IRFp(L)mc;. If the PED is judged by how accurately it
approximates this IRF, then the criterion vector would be C = IRFp(L).

To judge how well a particular eigenfunction approximates the true model, let C,, denote the appropriate
criterion vector implied by the eigenfunction approximation indexed by n. Lag operator polynomials can be

represented as infinite vectors, so define the approximation error by

[Approximation error] : IIC, — C||
where || - || denotes some function that quantifies the error. Then, the PED is the discretization minimizing
this error:
Definition 5. The primary eigenfunction discretization (PED), indexed by primary index n, is the
discrete time single-eigenfunction approximation such that

n = argmin |C,, — C||
nez

for some criterion vector C.

When trend inflation is reasonably small, the second eigenfunction (n = 2) is the primary eigenfunction.
I demonstrate this in Section [5] but it is consistent with known properties of the menu cost model: with zero
trend inflation, the deviation in the value function (Alvarez et al., [2023| Lemma 4) and price gap distribution
(Alvarez et all 2023, Lemma 6) are both anti-symmetric, i.e. spanned by only the eigenfunctions with even
index nlEI Among these, the lowest order eigenfunction is by far the most important; for n = 4, 6,8, ... the

contribution decays to zero rapidly.

Theorem 2. The primary eigenfunction discretization (PED) is described by three equations:

Optimal Price Setting p; = (1 —=08)MC; + 0Bp;,,
Price Level Law of Motion pr =€Fy + (1 —0)pf + Opr—1
Frequency of Price Adjustment Determination Fy, =Y, (pf —pi_1) + 0F;—1

I21rritatingly, eigenfunctions that are odd around z* have even indices, so I prefer the less common “anti-symmetric” termi-
nology.
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where, given primary eigenvalue index n, the coefficients are defined:

0= e_)\KFE,';L

=
1l
®

°

65(1—9);::7;

Ep* i = o+ o — &z
e =2 () + ) + 5 (10(0) — B, ()

Proof: Appendix

Theorem [2| gives a concise, linear representation of the model in terms of the FPA F; and two price
variables p; and py. However, like the Calvo model, this representation is not always the most practical.
This is because the reset price p; does not have a clear empirical counterpart, and also because both price
level variables tend to be non-stationary in general equilibrium models with real shocks. This is why New
Keynesian models are typically written in terms of inflation m;, rather than the price level. With Calvo
pricing, doing so gives a New Keynesian Phillips Curve.

This transformation is possible for the PED as well. Proposition[3|provides a “Menu Cost New Keynesian”
(MCNK) Phillips curve, which modifies the familiar Calvo equation with a correction term that accounts for
the endogenous FPA. The Proposition also provides a transformation of Theorem [2Js FPA Determination

equation that gives F} in terms of inflation.

Proposition 3. Under the primary eigenfunction discretization, the New Keynesian Phillips Curve is mod-

ified by

MCNK Phillip Curve ¢ = Amey + B + g(Ft —08F:11)
| S —
FPA correction
MCNK FPA Determination Fy = r (mg — Ome—1) + (0 4+ (1 — 0)pre) Frq
where A = w is the New Keynesian slope parameter and
Py

T S
1-— 0 -+ wp*ﬁ

Proof: Appendix [A.7]

Proposition [3| reveals that menu costs modify the traditional New Keynesian Phillips curve in two ways.
First, the slope A = w is affected through 6: the endogenous pricing decision substantially lowers
0, raising the “slope” of the Phillips curve, consistent with findings by |Gertler and Leahy| (2008]), |Alvarez
et al.| (2017)), and |Auclert et al| (2024)). Second, the curve is modified by a new dynamic term, the “FPA

correction”; which depends on the frequency of price adjustment. The Proposition also shows that menu
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costs introduce a new internal propagation mechanism: Fj is a persistent state variable in the MCNK FPA
Determination equation. This is noteworthy because the textbook New Keynesian model features no internal
propagation; the Calvo pricing structure alone delivers no persistence (Gali, [2008)).

Together, Proposition [3]s equations pin down paths for the inflation rate m, and FPA F} in terms of the
real marginal cost mc;. This system is easily embedded in general equilibrium models, replacing the usual
Phillips curve. I do so in Section [6] But first, some quantitative tests are needed to validate that the PED

is not just a reasonable dimensionality reduction, but an accurate approximation of the true solution.

5 Validating the Primary Eigenfunction Discretization

Is the PED a reasonable approximation of the true solution? This section answers: yes. I show that the

PED satisfies known theoretical properties in Section [5.1] and is quantitatively accurate in Section [5.2}

5.1 PED Validation: Theoretical Properties

This section gives two theoretical results validating the primary eigenvalue approach. The first shows that
it nests the usual Calvo linearization as a special case. The second shows that it is consistent with a known
result: without trend inflation, the menu cost model is closely approximated by the New Keynesian Phillips

Curve.

Property 1. With zero trend inflation (7 = 0), the textbook Calvo model is given by

*

Optimal Price Setting Py = (1 = OcaiwoB) (mee + pi) + 0caivoBpiia

Price Level Law of Motion Pt = (1 = Ocaivo)Di + 0catvopi—1

where Ocqrwe = €€ is the Calvo parameter consistent with the random reset rate ¢ for small time steps.

5.1.1 The PED of the Calvo Model is the Textbook Calvo Model

This section shows that the primary eigenvalue approximation nests the trend-less Calvo model as a special
case. This is a desirable property of a useful approximation. When the inaction region becomes large, the
6 coefficient on the law of motion converges to e~¢, which represents the share of firms receiving random

resets in the discrete time approximation. Proposition 4| gives the result:

Proposition 4. If trend inflation is zero (1 = 0), the PED of the Calvo model is equivalent to the textbook
Calvo model from Property[d}

Proof: Appendix
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5.1.2 Same Old Phillips Curve?

Auclert et al.| (2024) showed numerically that a menu cost model without trend inflation is, for a particular
calibration, very closely approximated by a Calvo modelE They also found that this approximation breaks
down when trend inflation gets sufficiently large. Proposition [3| demonstrated that with trend inflation, the
PED Phillips curve does not hold, and is affected by the FPA. But in this section, I show that the PED is
consistent with the established numerical finding: with zero trend inflation, the PED implies the standard

New Keynesian Phillips Curve.

Proposition 5. With zero trend inflation (m = 0), the PED implies the standard New Keynesian Phillips
Curve:

T = Amcey + B (57)
_ (1-0)(1-08)
where A = 7 )

Proof: Appendix [A29]

5.2 PED Validation: Quantitative Properties

This section quantitatively evaluates the PED approximation accuracy. Under a standard calibration, it is
relatively accurate, and much more so than the Calvo model, although the accuracy of both decreases when

the trend inflation rate because especialyl large.

5.2.1 Calibration

This section describes a standard calibration based on the micro pricing statistics measured in |Alvarez et
al| (2024)) for the French economy. As a baseline, I set trend inflation to be 7 = 0.02, matching the French
experience from the 1994-2019 sample. In various experiments, I will change 7 while keeping unchanged the
other structural parameters, such as the menu cost.

The model has three key parameters that govern the distribution of price changes: the menu cost ¥, the
diffusion variance v, and the random reset rate (. These parameters are not directly observable, so they
must be inferred from the price adjustment statistics. I calibrate the parameters to match three moments:
the frequency of price adjustment Fy,, the standard deviation of price changes, and the kurtosis of price
changes. In all cases I use the CPI-based statistics, and the kurtosis measure that adjusts for heterogeneity
(Alvarez et all |2022)). Table [1] (right panel) reports these three values for the French economy.

Table [1] presents three calibrations. The first is a pure Calvo model, which has no inaction region and
serves as a classic comparison. ( is chosen to match the measured FPA, I interpret to approximate the

instantaneous frequencyE The second is a Golosov-Lucas model, which sets { = 0 so that all adjustments

13 Auclert et al show this result for the full impulse of marginal cost shocks. This builds on an earlier result by |Alvarez et al.
(2017), who demonstrate the equivalence for the cumulative impulse response function.
1%In reality, the frequency is measured at the monthly level as 10.5%, which is annualized to 1.26.
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Parameter Symbol  Value

Trend inflation T 0.02
Discount rate P 0.04
n

Elasticity of substitution 6

(a) Fixed parameters

Parameters Targeted Moments
Model ¢ v P F std kurtosis
Calvo 1.2600 — — 1.2600 — —
Golosov-Lucas 0 0.003713 0.011842 1.2600 0.0759 —
Calvo-plus 1.1469 0.003580 0.165623 1.2600 0.0759 3.413

(b) Calibrated parameters and targeted moments

Table 1: Model calibration. Panel (a) reports fixed parameters that are held constant across calibrations.
Panel (b) reports three calibrations of the price adjustment parameters ({,v, ¥) to match moments from
French CPI microdata (Alvarez et al.,|2024). The Calvo model matches only frequency. The Golosov-Lucas
model (¢ = 0) matches frequency and standard deviation. The Calvo-plus model matches all three moments.

occur at the boundaries; this model can match the frequency and standard deviation but not kurtosis. The
third is a “Calvo-plus” model that includes all three parameters and matches all three moments.

The price change statistics are nonlinear functions of the three parameters (¥, v, (). Appendix derives
expressions for the statistics, given in terms of features of the stationary distribution. Typically the stationary
distribution is solved numerically, but it is known in closed-form for the special case of zero trend inﬂationE
Given v and (, there is a one-to-one mapping between the menu cost ¥ and the inaction region width £.
This allows for Proposition @, which gives the pricing statistics analytically from (¢, v, () under zero trend

inflation.

Proposition 6 (Zero-drift pricing statistics). If trend inflation is zero (= = 0), then the steady-state fre-

quency of price adjustment is
_ (cosh(s.ql/2)
** " cosh(s.qf/2) — 1°

The standard deviation of (log) price changes conditional on adjustment Ap = x*, — x is

2 1/2
Std(Ap) = ra (1 — sech(s,ql/2))
The kurtosis of conditional price changes is
6 30%¢

Kurt(Ap) = 1— sech(s=al/2)  4v cosh(s.qt/2) (1 — sech(s.al/2))’

15My calibration procedure features an inner and outer loop algorithm. For a given guess of (¥, v, (), the inner loop solves
the steady-state value function to obtain the inaction region boundaries (z,,,z},,Zss). Given the boundaries, the stationary
distribution hss(z) is computed from the KFE, and the price change moments follow from Appendix The outer loop adjusts
(¥, v, ¢) until the computed moments match the targets.
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where s,q = \/C/v and L = Tss — x, is the steady state inaction region width.
Proof. See Appendix [G} O

Proposition [0] is valuable for practitioners who may want to use the Calvo Phillips curve as an approx-
imation of the menu cost model under low inflation. Doing so requires a method to calibrate it because,

while the Calvo Phillips curve matches the functional form of the menu cost model, the Phillips curve slope

does not match (Auclert et all [2024). The typical Calvo calibration (where 1 — 6 is equivalent to the FPA)

is an inaccurate approximation, so it is crucial to have a microfounded value for 6 that captures the menu

cost model’s inflation dynamics.

5.2.2 Choosing the Primary Eigenvalue

The PED approximates the full eigenfunction expansion with a single term, indexed by n. Which eigenfunc-
tion should be chosen? The answer depends on which eigenfunction contributes most to the aggregate price

gap dynamics. In this section I show that choosing n = 2 is appropriate for the PED.
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Notes: Heatmaps show absolute contributions by eigenfunction index n (horizontal axis) and time (vertical axis) for 7,
Ft, and X; after a slow-decaying marginal cost shock with 0.9 annualized autocorrelation.

Figure 2: Eigenfunction Contributions to Aggregate Dynamics.
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The second eigenfunction (n = 2) is overwhelmingly important under the baseline calibration. Figure
displays the absolute contribution of each eigenfunction to the reset point x*, the frequency of price
adjustment F', and the aggregate gap X, as a function of time and eigenfunction index. The heatmaps

reveal that for all variables, the second eigenfunction (n = 2) explains the most variation. For both z* and

X, the even-indexed eigenfunctions are most important, consistent with [Alvarez et al| (2023). However the

FPA F, also depends noticeably on odd-indexed eigenfunctions, n = 1 in particular.
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Figure 3: PED Approximation Quality by Eigenfunction Index Choice
Notes: The left panel reports the relative mean squared error (MSE) of the aggregate gap IRF, and the right panel reports the
correlation between the PED and full-solution aggregate gap IRFs, across candidate PED indices. The baseline choice n = 2

(purple triangles) is most accurate and most correlated with the true solution. The [2, 1] case (yellow diamonds) uses separate
indices for prices (n = 2) and flow dynamics (n = 1).

To ascertain how the PED index affects the approximation, I compare the accuracy of several index choices
in Figure 3| Specifically, the criterion is the accuracy of the aggregate gap IRF to a nominal marginal cost
shock with annual autocorrelation 0.9. The left panel reports the relative mean squared error between the
PED and full-solution IRFs. When these are the criterion and error function, the Definition [5| implies that
the n = 2 approximation is the PED. Panel shows that this choice (plotted in purple triangles) minimizes
the MSE across all trend inflation rates. The next most relevant eigenfunctions (n = 4, 6) are less accurate,
and higher indices are even worse. I also consider an approximation where the FPA is allowed to use a
different eigenfunction, and choose n = 1 the FPA equation alone, given its relevance in Figure 2] This
asymmetric case is plotted in yellow diamonds; it performs almost as well as the uniform n = 2 PED, which
is why the curve is obscured, although it is slightly less accurate. Thus for parsimony, choosing a single
common 1 = 2 is appropriate.

The approximation error begins to rise when trend inflation increases. For hyperinflationary economies,
the PED may not be an accurate approximation, and Theorem [I]s full solution should be consulted. However,
for the moderate trend inflation rates up to at least 20%, the PED is a good approximation. Panel shows
the correlation coefficient between the PED and full-solution IRFs. Even when trend inflation is high and

errors start to increase, the PED remains highly correlated with the true solution. And again, the n = 2
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PED is the most accurate across all trend inflation rates when judged by the correlation.

5.3 PED vs Calvo

How well does the PED approximate the full solution compared to Calvo? To concretely illustrate the
approximation quality, Figure [4| plots impulse response functions for the aggregate price gap (top row)
and the frequency of price adjustment (bottom row) to a persistent nominal marginal cost shock. In each

subfigure, the full continuous time solution is plotted in black, aggregated up to a monthly frequency. The

dashed blue line denotes the n = 2 PED, while the dotted red line is the calibrated Calvo model.
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Figure 4: IRF's to Marginal Cost Shock: PED vs Calvo.

Notes: Responses are to a 0.01 marginal cost shock with annual persistence 0.9. Columns compare T = 2% and @ = 10%. The
top row reports aggregate price gap responses and the bottom row reports frequency responses. Black line is the full solution
(aggregated to monthly), blue dashed line is the monthly PED (n = 2), and red dotted line is Calvo.

The PED closely approximates the full solution in the baseline calibration (7 = .02). Figure shows

that the PED price gap is nearly exactly the same, because the n = 2 eigenvalue explains most of the

behavior of the full solution’s aggregate price gap. The PED price gap is just slightly larger, because it
features a slightly higher FPA (Figure [4c). The impact FPA is larger than under the full solution, because
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it is normalized to exactly match the impact effect of a permanent marginal cost shock, but in this example
the shock is transitory.

In contrast, the Calvo model badly approximates the dynamics. On impact, the Calvo price level jumps
by too little, because it misses the contribution from the endogenous FPA. With menu costs, the FPA jumps
on impact because the density of firms is most perturbed near the boundaries; this dynamic is entirely
missing in the Calvo model. As a result, Figure [{a] shows that the price increase is too small and too slow.
Moreover, the Calvo-plus model is the best possible case for the performance of the Calvo approximation,
because nearly all resets are random (see Table|l} ¢ ~ Fs;). This means that the Calvo model will miss the
short run price response but match the long-run decay (8carvo ~ 05)-

When trend inflation is higher, both approximations are worse (Figure. The PED is still more accurate
than Calvo because it more closely matches the short run price response, while both perform similarly in the
long-run. But consistent with the Figure [3] results, PED accuracy declines with trend inflation. Figure [d]
reveals that this is due to a worse match with the FPA behavior. The PED still has qualitatively the correct
shape, but it overstates the FPA on impact, and does not sufficiently capture the negative FPA perturbation
in the medium-run. Above 10% trend inflation, it may be wise to simply use the full solution if high accuracy

is needed.

6 The Menu Cost New Keynesian Model

This section embeds the menu cost pricing block into an otherwise standard New Keynesian model; I refer
to the resulting system as a “Menu Cost New Keynesian” (MCNK) model. T show how the model dynamics
are affected by the inclusion of menu costs and the value of the trend inflation rate. Then I calculate the

implications for optimal monetary policy.

6.1 The Linear General Equilibrium Model

The textbook New Keynesian model is a three-equation system including the Calvo pricing block:

Property 2. With zero trend inflation (7 =0), the textbook New Keynesian model is given by

NK Phillips Curve 7 = Moy + 2) + BE¢[mi41]
Euler Equation oy = oBe[yeq1] — ie + Ey[msa] + 2]
Taylor Rule it = GrTe + Gyyr + 27

The New Keynesian model adds an Euler equation (which follows from differentiating w.r.t. time the
household’s consumption first order condition in equation ) and a monetary policy rule for the nominal

interest rate ¢;. Imposing market clearing gives that consumption must equal output ¥;, and the labor supply
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equation implies that real marginal costs satisfy mc; = ay; + ztcm z¢ adds an exogenous cost shock which

controls how real marginal costs differ from those implied by labor supply alone.

Proposition [7] gives the MCNK model, which replaces the Phillips curve with Proposition [3[s pricing

block. This representation modifies the PED in two ways: forward-looking variables are only known in

expectation, and the real marginal cost mc; is determined in general equilibrium.

Proposition 7. The linear Menu Cost New Keynesian Model is given by

MCNK Phillips Curve

MCNK FPA Determination
Euler Equation

Taylor Rule

€
T = Moyt + z;) + BE[ma] + g(Ft — 9BE[Fi41])
Fy=q (mg —Om—1) + (04 (1 — 0)thre) Fiq
oy = 0By [ys1] — i + Ey[miqq] + Zg

i = G + Oyys + 2/

In the analysis that follows, I will assume the cost, demand, and monetary policy shocks are independent

AR(1) processes:

Cc __ C C
Zy = PcZi_1 €

d d d r T r
Zy = Pde—1 T & Zp = pPri_q T &

In the exercises that follow, I adopt the Calvo-plus calibration reported in Table[I} which imply the PED

coefficients (0, A, €, ) reported in Table 2] T set the remaining parameters to typical values.

Parameter  Value  Description

T .02 Baseline trend inflation (annual)

B 997 Discount factor (monthly)

o 1 Inverse IES

a 8 Marginal cost-output elasticity

0 .825 MCNK price-stickiness coefficient

A .0378  MCNK Phillips-curve slope

€ .000683 FPA correction coefficient

U 13.894  Inflation feedback to FPA

o 1.5 Taylor-rule inflation coefficient

by 125 Taylor-rule output coefficient

Or .5 Monetary shock persistence

Pe .5 Cost shock persistence

Pd D Demand shock persistence

or .01 Monetary shock innovation std. dev.
Ocp .01 Effective cost-push innovation std. dev.
o4 .01 Demand shock innovation std. dev.

Notes: Tabel reports the baseline calibration for the 4-equation general equilibrium model. PED coefficients (0, A, €, 1x)
are determined from the pricing parameters in Table |I|, and the expressions in Theorem Q and Proposition @

Table 2: Baseline Calibration of the Menu Cost New Keynesian Model

16See |Gali| (2008) for a clear textbook treatment. In this Property [2| representation, the natural rate of interest is fixed.
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6.2 MCNK vs Calvo: Impulse Responses

How does the MCNK model differ from the textbook Calvo formulation? The key distinction is the endoge-
nous frequency of price adjustment. In the Calvo model, the fraction of firms adjusting prices each period
is fixed at 1 — Ocqivo- In the MCNK model, this fraction responds to the aggregate state through the FPA
equation.

Figure [f] compares impulse responses to a monetary policy shock, a cost shock, and a demand shock.
Rows show inflation, output, the nominal interest rate, and the FPA. In all cases, the MCNK and Calvo

models produce qualitatively similar dynamics, but the magnitudes differ.

o %1073 Monetary Policy Shock 001 Cost Shock R %1073 Demand Shock
Menu Cost
— — —Calo 0.008
0.006
S
0.004
0.002
6 0
2 4 6 8 10 12 8 10 12
0
-0.005
=
0.01
0.015
2 4 6 8 10 12 8 10 12
-3
510 0.015
an
\ 0.01
30\
- \
2 N
AN 0.005
1 ~
~ -~
0 —— 0
2 4 6 8 10 12 8 10 12
0 0.15 0.08
0.02 0.06
0.1
&y -0.04 0.04
0.05
-0.06 0.02
-0.08 0 0
2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12
Months Months Months

Notes: Both models use the Calvo-plus calibration reported in Table Columns correspond to monetary policy, cost,
and demand shocks. Rows report inflation, output, nominal interest rate, and the frequency of price adjustment (FPA).
Blue solid is MCNK; red dashed is Calvo.

Figure 5: Impulse Responses: MCNK vs Calvo

The gaps between IRFs are due to two model differences. First, menu costs imply that the Phillips curve

(1—9)(0% is much steeper. This is the well-established steady-state selection effect: menu costs

slope A =
imply that firms with prices further away from their optimum are more likely to change prices, so real shocks
have larger price effects, as if prices overall were more flexible than under Calvo pricing. Second, menu

costs imply that the endogenous FPA distorts the Phillips curve. This is the time-varying selection effect,
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because aggregate shocks shift the distribution, which is captured by the FPA pathlzl Figure [5| shows that
the endogenous FPA response amplifies the inflationary effects of shocks: when a monetary policy, cost, or

demand shock increases inflation, the FPA moves in the same direction, acting as an “inflation accelerator” IEl

6.3 Trend Inflation and the PED Coefficients

Trend inflation affects the MCNK model through several channels. The PED coefficients 0, €, and v, vary

with 7, while by,» =1 — 60 and ¢ = 0 follow directly from the PED Theorem. Figure@ plots 0, €, ¥, and
the implied Phillips curve slope A = %91_95).

-3
0.85 : 5 10 : : :

0.8

= 0.75

0.7
0.65
7 (%) (%)
015} f
0.1} .
0.05} 1
0 ‘ ‘ ! . ! ‘
5 10 15 5 10 15
7 (%) 7 (%)

Notes: The figure reports how PED coefficients vary with trend inflation 7. In particular, it traces 0, €, ¥, and the

implied Phillips-curve slope A = (1—9)(%96)

Figure 6: PED Coeflicients vs Trend Inflation

Three patterns emerge. First, 6 increases with trend inflation: higher drift pushes mass toward the
boundaries more quickly, but also widens the inaction region asymmetrically, with an ambiguous net effect on
the decay rate. Second, the FPA impact coefficient v,,- varies with trend inflation, reflecting how boundary
conditions change as the inaction region becomes asymmetric. Third, the implied Phillips curve slope A

moves nonlinearly with 6, changing how marginal costs map into inﬂationm

[

Adams| (2025) shows how the path of the flow of resets encodes all of the relevant information in the dynamic distribution.
Blanco et al| (2024) coined this term; they study how price adjustment amplifies the inflation response in a nonlinear
Phillips curve.

19This positive association between the slope and inflation rate is observed in the data (Ball and Mazumder] 2011} [Hazell et
al.l 2022} |Costain et all,[2022)) and is a feature of other types of menu cost models beyond Golosov-Lucas or Calvo-plus (Blanco
et al., [2024; [Morales-Jiménez and Stevens} 2024).

=
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These coefficient changes alter the general equilibrium dynamics. Figure[7]demonstrates how the dynam-
ics depend on the trend inflation rate by plotting cumulative impulse responses (CIRs) for output, inflation,

and the nominal interest rate i; as a function of 7. The left column shows responses to a monetary policy

shock; the right column shows responses to a cost shock.

«1oMonetary Shock Cost Shock «10-Demand Shock
-4 N
14
6 -0.015
12
> 8 0.02 o
=T
) -0.025 8
12
-0.03 6
M
-0.035 4
5 10 15 5 10 15 5 10 15
-0.01 0.018
0.018
-0.012 0.016 0.016
E
£ 0.014 0.014 0.014
© 0.012
-0.016 0.012
0.01
-0.018 0.008 0.01
5 10 15 5 10 15 5 10 15
-3
.10 0.025
2 0.026
N 0 0.02 0.024
g5 -2 0.022
&
4 0.015 0.02
5
0.01 0.018
5 10 15 5 10 15 5 10 15
7 (%) 7 (%) 7 (%)

Notes: The panels report MCNK cumulative impulse responses as 7 varies. The left column corresponds to monetary
policy shocks, the middle column to cost shocks, and the right column to demand shocks. Reported outcomes are output,
inflation, and nominal interest responses.

Figure 7: Cumulative Impulse Responses vs Trend Inflation

The main lesson revealed by Figure [7]is that increasing trend inflation acts as if prices in the economy
become more flexible. In New Keynesian models, more flexible prices imply a steeper Phillips curve, which
is also the effect documented in Figure [(] The full dynamics captured by the CIR further include the
endogenous FPA behavior, but these effects are reinforcing. After a monetary contraction, inflation falls;
when 7 is large, inflation falls by much more. After an expansionary demand shock, inflation raises; when 7
is large, inflation rises by much more. Cost shocks are the exception, where trend inflation has a dampening

effect, because cost shocks mainly affect inflation directly rather than through the output gap.
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At what point is trend inflation non-trivial? It is common to justify a zero trend calibration as a reasonable
approximation of small inflation economies because firms’ decisions are second-order in the inflation rate;
this is clear in Figure[6] where the Phillips curve slope A is unchanging in trend inflation at # = 0. However
the figure also shows that trend inflation has first-order effects on the FPA coefficient €. As a result, trend
inflation affects the general equilibrium response even at low values. Figure [7] shows that the inflation CIR

is already substantially amplified at 5% trend inflation, and the effect quickly gets larger from there.

6.4 Optimal Monetary Policy

How should monetary policy respond to shocks in the MCNK model? To calculate optimal policy, I apply
the textbook method typically used to analyze the New Keynesian model, and illustrate how it is affected
by the inclusion of menu costs@

As in [Woodford (2003), I consider a central bank that commits to a Taylor rule of the form i; =
GxTe + Pyyr + 21, and chooses their optimal ¢, keeping ¢, fixed for this simple example. The central bank
minimize a quadratic loss function,

L = Var(m) + A, Var(y)

where A\, > 0 is the relative weight on output gap variability. The weight A, is typically calibrated to be
small, but [Pfajfar and Winkler| (2024) finds that equal weights more closely match public preferences, so I
choose Ay = 1 in the baseline. Because the cost shock enters the Phillips curve as Azf, the effective cost-shock
disturbance to inflation varies with the slope of the Phillips curve. To isolate the role of A in propagation
from its role in scaling the cost shock, I hold the product Ao, constant across models and inflation rates,
where o is the standard deviation of the cost shock innovation.

Figure [§] plots the optimal policy coefficient as a function of trend inflation. Optimal policy in the menu
cost model (solid blue line) responds more aggresively to inflation than in the Calvo model (dashed red line,
only calculated for barm = 0) because the slope of the Phillips curve is steeper. This is a standard result;
at zero-trend inflation, the menu cost PED is equivalent to a Calvo model with more flexible prices, which
requires more aggresive monetary policy because real shocks have larger inflationary effects.

The menu cost model’s prescription for aggresive monetary policy is strengthened as trend inflation
increases. This is for two reasons: first, higher trend inflation raises the Phillips curve slope (see Figure @
increasing the optimal ¢, for the standard reason. The dashed black line isolates this channel: only the
slope A is reparameterized with 7. The second reason is that the endogenous FPA amplifies inflationary
effects. Absent when trend inflation is zero, the FPA contribution becomes large; at 18.5% trend inflation,
the optimal ¢, coefficient is one third larger in the full menu cost PED (solid blue line) as it is when only

accounting for the effect on A (dashed black line).

20 A fuller treatment that does not depend on approximations and that considers questions of commitment versus discretion
would be desirable for serious quantitative analysis; see [Karadi et al.| (2025). I apply this textbook approach in order to
demonstrate the tractability of the PED and to quickly draw qualitative conclusions. The tractability will be particularly
valuable if additional realism is added to the general equilibrium model.
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Notes: The figure compares optimal policy coefficient (¢%) across trend inflation levels in MCNK and Calvo. Solid blue
line denotes MCNK, dashed black line uses the MCNK slope A but fixes ¢ = 0, and dashed red line denotes Calvo
(calculated only for 7 = 0).

Figure 8: Optimal Taylor Rule Coefficients vs Trend Inflation

7 Conclusion

Menu costs matter the most when trend inflation is sizeable. And yet this is also when they are least
understood. This paper works to resolve this tension by deriving the analytical solution to the firm’s MFG
under trend inflation. Then I derived a tractable linear discrete time representation, the PED. I showed how
the PED can be calibrated and inserted into a standard DSGE framework for optimal policy analysis.

But these methods apply more broadly. The menu cost model is one example of (s,.S) inaction behavior,
but it features prominently in many settings. And most cases, drift in the state variable (akin to trend infla-
tion) is standard. For example, drift matters for investment fixed cost problems when there is productivity
growth or depreciation (Caballero and Engel, |1999; [Baley and Blancol [2021)), portfolio management when
illiquid assets have large excess returns (Alvarez et all |2012)), or consumer durables when there is income
growth (Attanasiol [2000)).

In such cases, the MFG can be linearized and solved following the same steps as in Section [3] Then it
can be approximated with a PED as in Section[d] And finally it can be analyzed in tractable macroeconomic

models as in Section [6l Thus these methods will be useful for future macroeconomic research.
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A Proofs

This section collects proofs of the main results. Proofs of additional results in other appendices are included

where their results are stated.

A.1 Proof of Proposition

Proof. With the marginal cost function scaled by «, the HJB is
pv(z,t, k) = B (z — kMC(t)? 4 0(x, t, k) — 7Ov(x, t, k) + vO2v(x, t, k) + ¢ (v(@* (), t, k) — v(x, t, K))
Taking derivatives with respect to k at k = 0, the value function v(z,t, k) and HJB become
pi(z,t) = 2Bz (—MC(t))+0,0(x,t) — 70 0(x, t) + 1020 (2, t) +C (0(z*(t), ) + Op0 (™, t)&* (t) — D(z, 1)) (58)

where terms without ¢ arguments such as z* and w denote steady state values. The steady state value of

the marginal cost deviation M C(t) is zero. The reset condition at the steady state is 9,0(z*,t) = 0, which

gives equation .

The value-matching conditions are
B(z,t) + Opvss(2)2(t) = D(T, 1) + Opvss(T)T(t) = D(x*(t),1) + Opvss(x™)2*(t)

and the steady state smooth pasting and reset conditions imply that 0, vss(2) = 0vss(T) = Opvss(a™) = 0.

Therefore, the value-matching conditions become
oz, t) = 0(z,t) = v(z™, 1)
The smooth-pasting and reset-optimality conditions are
Dp0(2, 1) + 02045 (2)Z(t) = 0p(Z, 1) + 02055 (Z)Z(t) = p0(2* (1), 1) + O2vss(2*)2* () = 0

and the terminal condition is

0(x,T) =0
The derivative of the KFE becomes
Aeh(x,t) = vd?h(x,t) + T h(x,t) — Chiz,t) + F(t)6(x — %) — Fued'(x — x1,)2"(t) (59)

§’(+) denotes the derivative of the Dirac delta function, which is not everywhere defined, but is well behaved

when integrated against a smooth function, as will be the case in the MFG solution.
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The absorbing boundary conditions become
hiz, ) + Wy (2)2(t) = h(Z,t) + b, (2)3(t) = 0
The FPA is given by
F(t) = vdah(z, t) + wh(z,t) — vO: (@, t) — Th(z, 1) + (Vhi,(2) + Thi (2) 2() — (VhE(2) + T (7)) 2(t)
The latter terms simplify; the steady state KFE implies that away from the reset point:
[w#2l]: Chas(@) = VR (2) + Thi (2)

therefore the boundary conditions hss(z) = 0 = hys(Z) imply vh? (x) + Thl(x) = 0 = vh! (Z) + Thl(T),

and the FPA equation simplifies to
F(t) = vdyh(z, t) + Th(z, t) — v h(Z, t) — 7h(Z,t)

Finally, the initial condition on the interior is given by the derivative of the initial steady state distribution,

which is fixed:

h(z,0) =0 for z € (z,%)

At the boundaries, the absorbing conditions imply h(z,0) = —h/(2)2(0) and h(z,0) = —h’(z)Z(0), which

are possibly non-zero. O

A.2 Proof of Lemma [1]
Proof. By Lemma [5] the solution to the derivative HJB is
T ,z T ,z
oz, t) = —213/ / GHJB(x,y,T—t)y(—MC(T))dydT—g/ / Grrrp(,y, — £)0(c*, 7)dydr
t Jz t Jzr
T T
+ 1// 0y,Guyp(z,z, 7 —t)o(z", 7)dT — 1// 0y,Guyp(z,z, 7 —t)0(z*, 7)dr (60)
t t

The derivative value matching condition gives the Dirichlet boundary conditions. Gz p(x,y,t) denotes
the appropriately parameterized Green’s function per equation , shifted to the interval [z,Z]. Written
in the typical heat equation form, the HJB is

(1) = —v020(z, ) + 70, 0(z, t) + (p + ()i (z,t) — 2Bx(—MC(t)) — (i(z*, 1)
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so by Lemma [o| the Green’s function is

2 (sE—)+ (~(p+0-22)1) o — - _un??
GHJB(x7y7t) — _7€< = (Y $)+( (p+¢ 4y)t> Zsin (mr_(a?_g:x)) sin (M) e (i,i)gt (61)

T—x T T—x

n=1

which can be written concisely in terms of the eigenfunctions and eigenvalues:
oo
Gryp(w,y,t) =Y mspa(w,y)e /et
n=1

With this notation, equation can be written as

bz, t) =Y dn(z,t)

n=1

where

T rz
'ﬁn(xat) = _2B/ / ’YHJB,n(xay)e_AHJB'n(T_t)y(_MC(T))dydT

t

T e
+/ (C/ YaIB (2, Y)dy + vOyYH BN (T,2) — Vay’YHJB,n(iﬂ,!f)) e B (T=D (% YT
t z

which gives the desired expression once the definitions of © /¢, () and O, ,(x) are used. O

A.3 Proof of Lemma [2]

Proof. The linearized KFE has time-varying boundary conditions h(z,t) = —h, (z)&(t) and h(Z,t) =
—h. (2)Z(t), and two forcing terms: F(t)8(x — *,) and —Fyy8' (x — a*,)i*.

Decompose h = ﬁcrit + ﬁint where }Azcrit captures the singular components (boundary conditions and ¢’
forcing) and ilim satisfies zero boundary conditions with smooth forcing.

Lemma (8| implies that —h) (z)Z(t)Hy(x) + hl(Z)Z(t)Hz(x) solves the KFE with zero forcing and the
time-varying boundary conditions. Lemma |§| says that —F&*(t)J,+ (x) solves the KFE with zero boundary
conditions and forcing —Fys8'(x — 2%,)2*(t). Combining these gives the critical-point component herit in
7).

Since ﬁ(x, 0) = 0, the interior component must satisfy the initial condition

hing(2,0) = —herit (2, 0) = I (2)2(0) Hy (2) — 1o (2)2(0) Hz (2) + Fys2™ (0) T+ ()

By Property (3| with Green’s function Gxre(2,y,t) = 3., Ykren(z,y)e 5FEnt the solution decomposes
into iLint = Zn }Alint’n. O
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A.4 Proof of Theorem [1]

Proof. The value function at z is determined by the HJB solution (60]), which gives equations (31)-(32)
directly.
I prove the result for #*(t); the other boundaries follow the same logic. The optimal reset point is given

by the smooth-pasting condition

(1) L a0 )

z = ————0,0(z",

02vgs(x*) "

which is determined by future aggregate price gaps, marginal costs, and the value function at the boundaries

through the HJB solution :
() = 82035 25‘ Op (2", 1)

Decompose #*(t) = Y - | @ (t) into a sum of terms associated with each eigenvalue:

1

1 T T
e (Bhveale®) [ e MO+ 0], (57) [ e i e
Zvss(x*) ’ t ' t

by Lemma Using the coefficient definitions x - » = fm Mo () and g = WGI ()
gives equation .

Decompose the FPA F (t) = ch( )+ Fmt( ) into critical-point and interior components, where Fins (t) =
S Fint.n(t). The interior component Fiy ,(t) is computed from Ay ,, (2, t) using the flux formula. Since
ﬁint,n(x, t) satisfies zero boundary conditions, Lemmaand the flux formula give equation . The critical-
point component Flit (t) is computed from the lifting functions in Lemma giving equation .

The conditional path for the average gap X (¢) is given by integrating the conditional solution to the
KFE:

T : 0o

X(t):/:xh(xt :/i n(@,t)de = X, (t)

z n=1

where X, (t) = ff xhy,(x,t)dz. The average gap does not require the lifting function solution of Lemma
Lemma [3| gives a simpler solution that follows directly from the Green’s function approach (Property :
h(x,t) = S22 hy(z,t) where

n=1

ho(x,t) = /0 e AxFEn(t=T) (an(a:)F(T) + Wy ()2 (T) + Wan (2)2(T) — @z 0 (2)

)

2
—~
.y

——

ISH

)

wF,n(iZ?) = 'YKFE,n(za 17*)

wx*,n(x) = 6y7KFE,n(xax*)Fss wz,n(x) = _Vay'YKFE,n(xai)h;s(i) wa’c,n(m) = _Vay’YKFE n(xaf)hlss(j)
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therefore each X,,(t) term is given by

t) = /: /Ot e AKFE N (E=T) 1 (wm(x)ﬁ(r) + War n(2)25(T) + Wy (2)2(T) — wi,n(x)§(7)> drda

Substitute using the coefficient definitions to yield the desired expression. O

The proofs the following intermediate result, while solves the KFE for the perturbed distribution without

the lifting functions:

Lemma 3. The conditional solution to the KFE is the infinite sum

= Z (22, )

n=1

where
~ t .
ho(z,t) = / o AKFEn(t=T) (wF,n(a:)F(T) + Wy (2)E(T) + Wy n(x)2(T) — wi’ﬂ(@i(ﬂ) dr
0
and
72 vn?m?
A n= o
KFEn =( MR CESE
2 N ~
YrkFE (T, y) = ——e3 W™ gin (”77(95 1‘)) sin (_(ygc))
rT—Z T—z T—x
@rn(2) = YK FEn(2,27)
ww,n(fﬁ) = 8y'VKFE,n<-7J,.Z’*)Fss w@n(-%') = —Vay’YKFE)n(x,Q)h;S(£> wi)n(x) = _Vay'VKFE,n(.T, i‘)h;s (i‘)

Proof. By Property [3], the conditional solution to the derivative KFE is
/ / GKFE x,y,1 ) ( )5( —z* dey+/ / GKFE .Z' Y, t )Fgg(s( )i*(T)dey
—V/ 6yGKFE(.’L',£7t—T)h;s(g)@(T)dT-i-V/ ayGKFE(JJ,i',t—T)hlss(,f)i‘(T)dT (62)
0 0

where G rr(z,y,t) is the appropriately parameterized Green’s function per equation , albeit shifted to

the interval [z, Z|:

—~

Gire(®,y,t) = % (Zw-o+(-¢c-5)t) Zsin (mrj(x —x)) sin (mr_y —xx)> e_(uinf;r;t (63)

T —

n=1

The Green’s function terms can be neatly separated by

oo
Grre(@,y,t) =Y Ykron(v,y)e et (64)

n=1
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With this notation, the solution becomes
o0
= hn
n=1
where

x t
hn(%t)z/ /WKFE,n(J%y)e_'\KFE’"(t_T)F(T)CS(Z/ x*)drdy— / /VKFEn(a: y)e AeFEnt=T) B 6 (y— )3 (1) dTdy
x 0

t
_,// ay’)’KFE,n(iC,i)ei)\KFE’"(t*T)h/ss(i)@(T)dT+V/ ay,yKFE,n(x’j)e*AKFE,n(th)h;s(j)‘%(/]—)d/]—
0 0

Simplify the Dirac terms:

t t
:/ nyFE’n(x,x*)e_AKFE*"(t_T)F(T)dT+/ ay'prEm(m,x*)e_AKFE*"(t_T)FSSi‘*(T)dT
0 0

t t
—I// 8y’YKFE,n(5C,i)ei)\KFE’"(t*T)h/ss(Q)@(T)Ch+V/ ay’YKFE,n(x,f)eixKFE’"(t*T)h,ss(f)i(T)dT
0 0

t
_ / e—)\KFE,n(t—T) ('YKFE,n(x, x*)F(T) + ay'YKFE,n(-T, .Z‘*)Fss.f* (T)
0
— vy YK FEn (T, ) I (2)2(T) + vOy YK PE (T, f)h;s(f)f(ﬂ) dr

which gives the intended expression. O

A.5 Proof of Proposition

Proof. The approach is to approximate the forcing in each integral of Theorem [I] as constant on intervals
of width At, and integrate the exponential kernel exactly. For any eigenvalue A, the exact integral of the
kernel over one time step is given by equation .

For the value function component at z* (and similarly for the boundary points) a discrete time approx-
imation of the integral in equation treats the forcing as constant at its right-endpoint value on each

interval of width At, and integrates the exponential kernel exactly:

kAt

~ 3 (Orrem(@)(~MC(t + kAD) + O, (x*) ia”, t + kAL)) / eAIB AT gy
k=1 (k—1)At

7/\H‘]B,n(k?71)At

The integral evaluates to e ¢(Amsp.n)- Because of the exponential function, this equation is

recursive forwards:

O (2%, 1) = (Opn10n (") (—MC(t 4 At)) 4+ Oy (") i(2*,t + A)) SN yB.m) + € MBS (2%t 4 At)
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For & (t) (and similarly for the boundary points) a discrete time approximation of the forward-looking

integral in equation follows the same procedureE
‘%:L(t) ~ Z (Xx*,n(_MC(t + kAt)) + Ez*,n@(w*v L+ kAt)) e_/\HJB’n(k_l)At §()\HJB,n)
k=1

Because of the exponential function, this equation is recursive forwards:
5(t) & (Xar n (= MOt + At)) + Epe n0(2", t + A1) s(Aprspn) + € /BB G0 (8 4 At)

For the interior component ﬁ}nt’n(t), a discrete time approximation of the integral in equation (37)) treats
the forcing as constant on each interval of width At, and integrates the kernel exactly. Note that this involves

#*(7), 2'(7), and 2'(7), which are approximated by the discrete differences A#*(7) = &*(7) — 2*(7 — At),

Az(7) = z(7) — Z(7 — At), and similarly for Z. Since #*(7) ~ AZ*(7)/At, the derivative terms receive a
factor ¢(Axrp,n)/At while the F term receives S(AkFEn). The economy is in steady state for ¢ < 0, so the

initial condition term is absorbed into the 7 = 0 term:

Lt/At] ks vy ~
~ _ A A AZ*(jAL) AZ(jAL) AZ(jAL)
. ~ Ak PE,n(t—jAt—AL) » . —
Fintn(t) ;:0 e CO\KFEm)(SOF,nF(JAtH% NI T P A )

using Az*(0) = 2*(0), Az(0) = 2(0), and AZ(0) = Z(0) to combine the initial condition term with the 7 = 0

flow term. Because of the exponential function, this equation is recursive backwardsg

Az*(t) Az (t) Az (t)

At Paim Ty TP TAY

ﬁ}nt,n(t) ~ g(AKFE,n) (@F,nﬁ(t) + Spw*/,n ) + B_AKFE‘nAt Aintm(t — At)

For the critical-point component ch (t), equation gives directly:

Fcrit (t) = (pz*i'* (t) + W@@(t) - (Pi‘%(t)
The total FPA is F(t) = Fuit(t) + 300, Fino.n(t).
For the aggregate gap Xn(t), a discrete time approximation of the integral in equation treats the
forcing as constant on each time interval and integrates the kernel exactly:

[t/At]

Kty Y e e IAAN (O ) (ERnFGAL + Eor i (GAD) + EnB(/AL) — 5.0 (JAD))
j=0

21While the backward-looking KFE is approximated with a left-endpoint evaluation (including the current period flow), the
forward-looking HJB is approximated with a right-endpoint evaluation (starting from the next period). This distinction ensures
stability in the discrete time system.

22The choice to use F(t) here versus F(t — At) approximates the same continuous function, but is useful for both stability
and so that the discrete time approximation of the vector representation follows naturally from the continuous time case.
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Because of the exponential function, this equation is recursive backwards:
Xn(t) ~ g()\KFE,n) (fF,nF(t) + fz*,nfi;* (t) + gg,ni(t) - gi,n‘%(t)) + e_AKFE’nAtX’ﬂ(t - At)

The total average gap is X () = .00, X,,(1).

Setting the step size to At = 1 and adopting the discrete time notation gives the desired equations. [

A.6 Proof of Theorem [2I

Proof. The Optimal Price Setting equation follows from equation , with p; = a,+2} , for some scalar
O[p* :

P = aprsuiBi (Xaw i (—MCy) + Ege 5 Vi7) + e MIBApE

Following the value matching conditions , it is convenient to characterize V, instead of V;* directly. The

primary eigenfunction approximation is
Vi =V, =<uspn (@Mc,ﬁ@) (—=MCy) + @v,ﬁ(@f@*) +e MIBAY, L

by Proposition [2| Observe that O ¢, (z) = 0 and O, ,(z) = 0, because Y5, (z,y) = 0 for all n and y.

Therefore V, = V,* = 0 and the price setting equation reduces to
P; = Qp-SHIB A Xa i (—MCy) + e M apr

The effect on p; of a permanent marginal cost change « is

dpf  QpSHIB# Xa* i .

dk 1 — e AHIBM

thus long-run neutrality requires op+SgsB2 Xarn = 1 — e~ MiIBA . Since syypq = (1 — BfAH"B‘;’)/AHJB,ﬁ,
the 1 — e~ *#78.» factors cancel, giving 0pr = AHJBA/ Xa* n- Use e MHIBA = ¢~P=AKFEA = (8 and note

that op«SHIB,A Xax,n = 1 — 08 to write
p; = (1 = BOYMC; + 08p; 4
Similarly, the other results from Proposition [2] give

P, = OpSHIB A Xan (—MCy) + e B0 Pt = pSHIB A X (—MCy) + e MIB Gy

—t+1
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and long—run neutralit y requires
1 —AHJB.# 1 —ANHJIB.#
OZin )13,’;7, X@,fl ( € 7B ) ang J l;,fl XI,’FL ( € 7B )

which then imply p} = p, = Dt-
The Flow Determination equation follows from the critical-point component equation and the mod-
ified interior component equation . In the single-eigenfunction approximation with p; = p, = Pt the

critical-point component is

%
Fcrit,t = Pp=* Dt

where @, = g+ + @, — @z combines the critical-point coefficients (which do not depend on n). The interior

component satisfies

~ kal ! * _)\ . A
Ent,fz,t =SCKFEn (QOF,?LFt + SOP*,;,Apt) + e TKFER int,f,t—1

where <p’p*7n = Qo'+ Parn — Pz n involves the primed interior coeflicients and Ap; = p; — pf_;.
The total FPA perturbation is Ft = chyt + Zzo:l ﬁ}mm,t. In the PED, the FPA is up to scale in each
component, i.e.

Ft = aF7CI‘itFCrit,t + aF,intEnt,ﬁ7t
for some coefficients ap it and apine Substituting the expressions:
* ~ - ’ * - AL
Fy = apcit@peD; + arintSkFEn | Oralt + ©pe 3 ADy ) + e KPP A B a1
P,

FPA-consistency (Definition [3]) requires that after a permanent x marginal cost shock, F; — 0 in the long-
run. p; permanently increases by & to satisfy long-run neutrality, which implies ap it = 0. FPA-consistency

also requires that @r, coeflicients sum to zero. Therefore the FPA equation reduces to
Fy = apinSKFEn Ppe 1 AP + e AKFEAR
FPA-consistency also requires matching the impact effect Fm to a Ap} = k shock, which requires

!
Fik = QpintSKFE & Ppe 4

3

= QFjint = — 7
SKFEf Pp+

given these values for the scaling coefficients, use the Fy value from Definition (which implies ¢+ = Fl)

45



and substitute back in with the 1,« and 6 definitions to yield the Flow Determination equation:
Fy =y (0 —piz1) +0F

The Price Level Law of Motion follows from the discretization , which holds up to scale with unknown

coefficient «v,. In the single-eigenfunction approximation with p; = p , = Dt this reduces to
Pt = Qp SkrE (§Falt 4+ Epr alf) + 0pt—1

where gp*yn = fw*,n + gz,n - gi,w
Long-run neutrality requires that a permanent x increase in M C} leads to a k increase in the limit p.

dp’,

In the long run, —== = x and ddLﬁ = 0 by construction. These limits imply

dp dp
TZO = QpSKFEA §pr,nk + Gd—’:o

Impose neutrality (d’g—’:" =R):
1-90

P SkrEAEpr i
thus the law of motion becomes
_ Ern «
pr=1—-60)2"~F, +(1—0)p; +6p,_1

p*,n

A.7 Proof of Proposition

Proof. Begin by shifting forward the Price Level Law of Motion, multiply by 63, and subtract from the

original equation:

pe — 0Bpir1 = e(Fy — 0BF 1) + (1 —0)(py — 591’92:-1) + 0(pt—1 — 0Bpr)

substitute from the Optimal Price Setting equation and rearrange:
pr = 0BXep1 = €(Fy — 08F 1) + (1 — 0)(1 — 08)(mey + pe) + 0(pe—1 — 05pe)

—Opi1+ (1 —m+0?B)py — 08X, 41 = e(F, — 08F41) + (1 = 0)(1 — 08)mee + (1 — 0)(1 — 68) — m)p
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for some m. Specifically, it will be helpful to chose an m such that the left hand side can be written in terms

of inflations, i.e. II; = p; — ps_1.
—Opi—1 4+ (1 —m+6°B)p; — 08X 11 = €(F, — 0BF, 1) + (1 — 0)(1 — 6B8)me, + (1 — 0)(1 — 68) — m)p,

01 + (1 —m + 628 — 0)p; — 08X 11 = €(F, — 08F 1) + (1 — 0)(1 — 08)mce + (1 — 0)(1 — 08) — m)p,
GHt + (1 —-—m+ 925 —0— Hﬂ)pt — GBHt_H = E(Ft - 95Ft+1) + (1 — 9)(1 — Hﬁ)mct + ((1 — 9)(1 — Hﬁ) - m)pt

which simplifies nicely if m = (1 — 6)(1 — 63). Using this value, divide by 6:

= BTl = 5(F — 05F) + a-00-05 . . ((1 —0)(1-608) (1-6)1- 9@) N

9 ] B 9
(1-0)(1-0p)

€
I, — Blly4q = - 7

Q(Ft —0BF1) +

mce
Substitute in the with A = (1_9)‘(,% and rearrange:

€

II; = Ame; + Bl + i

(Fy — 0B8F11)
Differencing the Price Level Law of Motion gives
m=e(Fy — Fio1) + (1 = 0)(py — pi_1) + 0me—

rearrange to isolate p; — py_; and substitute into the FPA Determination equation

%*

F:
10

(mg —Omp—1 — e(Fy — Fy_1)) + 0F

Collect terms:

(1 + f”’_é) F, = lﬂjf*e (¢ — Omp1) + (9 + f”_;) Fi

Yp= 0(1—0) + pee
Fr=—T"—(m —0m_ —— L F
t 1—t9+1/1p*e(7rt mi-1) + 10+ gpec t—1
Substitute with 1, to complete the proof. O

A.8 Proof of Proposition

Proof. The PED Optimal Price Setting equation already matches the Calvo model, so it remains to show that
the PED Price Level Law of Motion reduces to the Calvo law of motion with the appropriate 6 parameter.
The Calvo model is obtained as the limiting case of the menu cost model when the inaction region

becomes large, = & — x — oo, keeping the random reset rate ¢ > 0 fixed.
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When 7 = 0, the stationary pricing problem is symmetric, and the aggregate response to a (small) cost
shock is anti-symmetric around the midpoint. (Alvarez et al.l|2023) show that in this case only even-indexed
eigenfunctions are relevant, so the PED eigenvalue index n must also be even.

Lemma [4] implies that ¢ = 0 with zero trend inflation and n even. Therefore the PED Price Level Law
of Motion (Theorem [2)) reduces to

pe = (1= 0)p; + 0p;—1

which is the Calvo law of motion.

Finally, 6 in the PED is defined as

7L27\'262

Q — ¢ MKFER — 6_(:_ 202

from the definition of Axrg,, in Lemma Taking the limit as £ — oo gives

lim 0 = e~ = Ocaivo
{—00

This proof relies on an intermediate result:
Lemma 4. If trend inflation is zero (1 =0), then g, = 0 for any even eigenvalue indez n.

Proof. From Lemma

xT
§F7nE/ rYkFEn (T, ") d.
X

Using the explicit kernel definition , when 7 = 0 we have

’YKFE,n(% y) = % sin(nﬁ(me x)) Sin<mr(y€ m)) ; =z —zx.

Evaluating at y = z* gives

YEFEn(T,2%) = jsin(W) sin<mr(x;_$)) )

Zero trend inflation implies that the inaction region is symmetric, so z* = (z + z)/2 and (z* —z)/¢ = 1/2,

thus
sin M = sin(m) =0 for even n.
14 2
Therefore Yk pg.n(z,2*) = 0 for even n, which implies {r, = 0 and hence € = 0. O
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A.9 Proof of Proposition

Proof. Trend inflation is zero, so the PED eigenvalue index n must be even (Alvarez et al [2023). With an
even eigenvalue index n, Lemma [4] implies € = 0.

Per Proposition |3} the Phillips curve is
€
7 = Ame + B + a(Ft —08F41)

With € = 0, the §(F; — 3F;11) correction term vanishes, yielding the standard NKPC. O

B Mathematical Appendix

Property 3. For a PDE of the form:
O f(x,t) = ad3 f(x,t) + b, f (2,1) + cf (2, ) + B(x,t)

on the interval x € [0,¢], t > 0, with Dirchlet boundary conditions f(0,t) = go(t) and f(¢,t) = ge(t), and

initial condition f(x,0) = fo(x), the unique solution is given by:

¢ t L t t
f(x,t):/o G(:E,y,t)fo(y)der/O /0 G(x,y,t77)¢(y,7)dyd7+a/0 ayG(x,O,th)go(T)dea/o 0,G(x, L, t—7)ge(T)dT

where Gape(2,y,t) is the appropriate Green’s function:

Gt - D) En () ()

n=1

which is also written in terms of eigenfunctions and eigenvalues as

Gabc(xv Y, t) = Z 7”(337 y)ef/\"t (66)
n=1

where A, = (c — %) + a";”2 and vy (z,y) = %eﬁ(yim) sin (25*) sin (“7).

Lemma 5. For a PDE of the form:
8tf(x7t) = —aagf(x,t) - baxf(xvt) - Cf(l’,t) - @(:L’,t)

for xz €[0,¢], t € [0,T], with Dirchlet boundary conditions f(0,t) = go(t) and f(¢,t) = ge(t), and terminal
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condition f(x,0) = fr(x), the unique solution is given by:
¢ T
f@t)= [ Goreloon T =02y + [ [ Guseloy — (g, Tydyr
0 t Jo
T T
+ a/ OyGape(x,0,7 — t)go(T)dT — a/ Oy Gape(z, 0,7 — t)ge(T)dr  (67)
t t

where Gape(,y,t) is given by equation (65).

Proof. Use a change of variable to redefine the problem: let w =T — t and define
hz,u) = flz, T — u)
Then the PDE becomes:
Ouh(x,u) = ad?h(x,u) + b h(x,u) + ch(z,u) + ®(x, T — u)

with initial condition h(z,0) = fr(z), and Dirchlet boundary conditions h(0,u) = go(T — ) and h(f,u) =

ge(T — u).
Per Property [3 the unique solution is given by:

Mo = [ Gueloyfr@idy+ [ Guloou = 0)00,T - w)dyds
—00 0 —00
—|—a/ 8yGabC(m,O,u—w)go(T—w)dw—a/ OyGape(x, b, u — w)ge(T — w)dw
0 0

Transforming back to the original variables (using w =T — 7 and u = T — t), we have

o T [e’e)
W) = / Gt ) fr(y)dy + / Gaeli,y,u — T + 7)®(y, 7)dydr
—00 T—u J—oc0

T T
+a O0yGape(x,0,u — T+ 7)go(T)dT — a OyGape(z, b,u — T + 7)ge(T)dT
T—u T—u

0 T 0
:/ Gabc(xay7T7t)fT(y)dy+/ / Gabc(x7y77—7t)q)(ya7_)dyd’r
t —0o0

—0o0

T T
+ a/ 0yGape(x, 0,7 — t)go(T)dT — a/ O0yGape(x, b, 7 —t)ge(T)dT
t t

=h(zx, T —t) = f(x,t)
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C Steady-State

C.1 Steady-State Value Function

The firm’s steady-state value function vss(x) solves the steady-state HIB

puss(z) = —Ba® —mvl,(z) + voly(z) + ((vss(z®) — ves()), z € (z,7), (68)
which is a second-order ODE on the steady-state inaction interval. The free boundaries x,,, z¥,, and Z4s
are determined jointly with vgs(-) by the usual value-matching and smooth-pasting conditions:

Value-matching Vss(2) = s (%) + U = v44(T)
Reset optimality Opvss(2*) =0
Smooth-pasting OrVss(z) = 0 = 0, 045(T)
Rearrange the HJB as
vugy(2) = 7 (2) = (p+ Quss(z) = Ba? = (uss(a®), € (z,2). (69)
The homogeneous part,
vop(z) — v, (2) = (p+ Qualx) =0, (70)
has exponential solutions. The characteristic equation
vr2 —ar—(p+¢) =0
has two real roots
TE/72+4v(p+Q)
1,2 2w ) ( )
so the homogeneous solution is
op(x) = Cre™" + Cae™", (72)

for constants C1,Cs. Given some particular solution v,(z), the value function solving the HJB is given by
Vss(2) = vp(x) + vn(2).

The five boundary conditions pin down the five unknowns (z%,,z,,, Tss, C1,Ca), which can be solved

*
8872889

numerically.
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C.2 Steady-state Stationary Distribution

Write the steady-state Kolmogorov forward equation on the inaction region (set d:h = 0):
0 = v02hys(x) + TOphss() — Chos(z) + Fus 6(z — 2%,), @ € [z,7] (73)

with absorbing boundary conditions

normalization

and the convention that hss(z) = 0 for x ¢ [z, T].

*
EXR

Away from the reset point z*,, the distribution is differentiable and the steady-state KFE on each open

interval reduces to the homogeneous ODE
VR (@) + Thie(2) = Ches(x) =0, @ € (z,2%,) U (¢4, 7) (74)
The characteristic equation is
vr? +ar— (¢ =0,
with explicit roots

—7 £+ /72 4+ 4¢
2v

T = (75)

Note that for the parameter values of interest (v > 0, ¢ > 0) the discriminant is strictly positive and the
two roots are real.
Because the homogeneous coefficients are identical on both sides, the exponential basis given by rq, 9 is

shared. Thus the general piecewise form is

hi(z) = Ape™® + Bre™®, € [z,x},],
hss(z) =
hr(xz) = Ape™® + Bre™®, x € [z%,7T],

EER

The four coefficients (Ar, Br, Ar, Br) are pinned down by four linear conditions: the two absorbing
boundary conditions hss(z) = 0, hss(Z) = 0; continuity at the reset point hr(xk;) = hgr(zl,); and the
normalization condition [ hg,(z) dz = 1.

Two of the coefficients are easily determined from the absorbing boundary conditions. From hgs(z) = 0:

A = —BLe(mirl)£ (76)
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From hgs(Z) = 0:
AR = —BRG(TQ_M)f (77)

In the steady-state, the FPA is given by
Fys = vhi(z) + Thss(z) — v, (7) — Thss(T) + ¢ (78)

Given the absorbing boundary conditions hss(x) = hss(Z) = 0, this simplifies to Fys = vhl (z) —vh. (z)+.
This flow of firms re-enters the distribution at &} _; the of firms in either direction from this point must sum
to Fis:

Foo = v (hp(25,) — Wp(x,))

S8 SS

where now the drift terms disappear because the continuity condition implies 7 (hr(2*) — hg(z*)) = 0.
In practice the small 4 x 4 linear system for (A, Br, Ar, Br) is assembled and solved numerically (with

attention to conditioning); once the coefficients are known the piecewise density is completely determined.

D Lifting Functions

The eigenfunction expansion in Lemma [2| uses eigenfunctions satisfying homogeneous Dirichlet boundary
conditions. Infinite sums of these eigenfunctions converge almost everywhere to the true solution. However,
while they converge in a neighborhood around the boundary points, they do not converge at the boundaries
themselves. For most features of the price gap distribution this distinction does not matter, but for the flow
of firms out of the boundaries, which is determined by the distribution level and derivative at the critical
points, it does.

This section constructs lifting functions that resolve these difficulties by solving the problematic terms

with closed-form expressions.

D.1 Lifting Function for Reset Point Perturbations

With the standard Green’s function approach, the effects associated with changes the reset point x* are
problematic, with non-convergent coefficient series.

The key idea is to construct a “lifting function” J,-(x) that solves the same spatial differential equation
as the Green’s function, but with a §’(x — 2*) source rather than a §(x — 2*) source. The contribution of this
lifting function to the frequency perturbation F can be computed in closed form, yielding a critical-point

coefficient .~ that captures the divergent part of the eigenfunction sum.

Lemma 6. Let K = v9? + 70, — ¢ be the KFE spatial operator with ¢ > 0. There ewists a function
Jer + [z, ] = R satisfying
KJp(z) = =6 (z — 2*) (79)
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with homogeneous Dirichlet boundary conditions Jp-(z) = Jp«(Z) = 0.

Define the characteristic roots

—T 4+ /T2 4+ 4v¢ —7 — /T2 + 4u¢

b 2v "2 2v
and the Neumann basis functions
Yr(x) = roe" (T2 _ pyeraen) Yr(x) = roe" (#=E) _ . or2(z—T)

which satisfy K, = Kipr = 0 with 7, () = ¢R(Z) = 0. Then

Yr(z*) .
I/WN(:U*) Yr(r) z <z

T () = (30)
( ) Yr(x) >z

Z/WN( *)
where
Wy (2") = ¢r(a")R(2") — Y1 (27)Yr(z")
Proof. T construct a function j,«(z) satisfying Kj,« = —d(z — 2*) with Neumann boundary conditions

jre(z) = ji.(Z) = 0. Constructing j,« requires basis functions satisfying K¢ = 0 with a zero-derivative
condition at one boundary. For ty(z) = ae™ (=2 4 bem2(*=2)  the condition ) (z) = ary + bry = 0
gives a/b = —ry/r1. Taking a = ro and b = —r; yields ¢¥p(z) = roe" (F=z) _ pier2(@=z) - Similarly,
Yp(w) = roe™@=F) — pye"2(2=7) satisfies 1 (%) = 0.

The Neumann Green’s function is j,«(x) = By (x) for z < z* and jz«(x) = Bryr(x) for © > x*. The

matching conditions at z* are continuity of j,+ and a jump of —1/v in j..:

Bryr(a”) = Bryr(a”), BWMM—&%WF*%

Solving gives By, = —¢g(z*)/[vWn(2z*)] and Br = —¢r(x*)/[vWn (z*)].

Finally let J,«(z) = j..(z). Since K has constant coefficients, differentiating Kj,« = —d(z — 2*) gives
KJ« = =8 (x—2x*). The Dirichlet boundary conditions J,«(z) = Jy«(Z) = 0 hold because j,.(z) = j..(Z) =
0 by the Neumann conditions on j,-. Explicitly, J«(x) = By} (z) for < 2* and J,-(x) = Bryi(z) for
x > x*, which gives . O

Lemma 7. Let J,« be the lifting function from Lemma[6 Define the critical-point coefficient

pox = —Fysv (Jalc* (z) - Jalc* (Z))
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Then
Fygrira(r1 — ra) (Vr(z*) — ¥p (7))
WN((E*)

where ¥r,, Yr, and Wy are defined in Lemma [0}

Proof. From (80), J..(z) = Bpv)(x) where B = —tgr(z*)/[vWy (2*)]. Computing the derivative, ¢} (z) =

rlrg(e”(“"’ﬁ) — e”(x*@), so Y7 (z) = rira(r1 — ra). Therefore

77/11%(93*) : 7"1T2(7”1 - 7”2)
Z/WN(.Z‘*)

o (z) = —

Similarly, J.(Z) = Bry'%(Z) = —r(x*) - rire(r1 — re)/[vWa (z*)]. Substituting:

Fyorira(r1 —r2)

P = *FSSV(J;* (z) — Jg/c* (f)) = W (2%)

(Vr(™) — ("))

D.2 Lifting Functions for Boundary Perturbations

When the inaction boundaries move, the absorbing boundary conditions for the distribution become inho-

mogeneous: h(z,t) = —h’, (z)z(t) and h(z,t) = —h’,(2)Z(t). Rather than expanding these inhomogeneous

conditions directly in eigenfunctions (which diverges), we construct harmonic lifting functions that satisfy

the boundary conditions exactly and contribute algebraically to the aggregate quantities.

Lemma 8. Let K = v9? + 70, — C be the KFE spatial operator with ¢ > 0. Define the characteristic roots

/724 5 /At 4
TEVT R, ToVTAAe (82)

2v 2= 2v

=

and let ¢ =T — x denote the width of the inaction region.

There exist harmonic lifting functions Hy : [z,Z] — R and Hz : [z,Z] — R satisfying

KHy(z) =0, Hy(z)=1 Hy(x)=0 (83)

KHy(z) =0, Hy(z)=0, Hy(z)=-1 (84)

The explicit solutions are

era(e—z) _ ori(z—z) , o(ra—r1)e

L 1 _ 6(7'2—7'1)5

eri(a—2) _ gra(e—)

67‘25 — erll

Proof. The general solution to Ku = 0 is u(z) = C1e™(#~2) 4 Cher2(z—2),
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For H,: The boundary conditions Hy(z) = 1 and H,(Z) = 0 give

Ci1+0Cy=1

Clené + CQ@TZZ =0

Solving: C) = —e™¢/(e"* — em2!) and Cq = €™ /(e™* — e72%). Substituting and simplifying yields (85).
For Hz: The boundary conditions Hz(z) = 0 and Hz(Z) = —1 give

Ci14+Cy3=0
Cre"t + Che™ = —1
Solving: Cy = —1/(e"* — e™*) and Cy = 1/(e™* — e"2*). Substituting yields (3. O
Lemma 9. The derivatives of the harmonic lifting functions at the boundaries are:

o — rle(”_’"l)e

A (s7)
() = 2o (39)
H(z) = % (89)
@) = MO (90)
Proof. Direct differentiation of and . For Hy:
H.(a) = roe’2(@—2) 1__7“1:(:(_1:?2 . elra—r1)e
Evaluating at = z gives (87)); at = = z gives (88). The formulas for HZ follow similarly. 0O

Lemma 10. Let H, and Hz be the harmonic lifting functions from Lemma @ The critical-point coefficients

for the aggregate gap are

&=-n. ) [ i Hy(x) da (1)

T

& =-hl (%) | xHz(z)dx (92)

T

These integrals are well-defined and finite since Hy and Hz are smooth on [z, T].
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Ezxplicitly, using the exponential forms 7 :

v 1 B
/ ‘THE(CE) dr = m |:,[2 — 6( 2 l)ell] (93)
xT

/ x Hz(x)dex = !

oy ) [ — 1] (94)
where

ze L) gy = [(rkf — 1)6”’4 — (rpz — 1)] , k=1,2

)
Il
wﬁm‘ —

Proof. The definitions 7 follow from the critical-point decomposition : the boundary contribu-
tion to heris is —hl,(2)2(t)Hy(x) + h.y(2)Z(t)Hz(z), and the aggregate gap contribution is Xt pe(t) =
[ @ (~h(2)(t) Hy () + W, (2)3(t) Ho () da.

The integrals I, are computed by integration by parts:

x T T 1 x
/Jﬂmmm:[gmm]_/gmmm
z Tk x Tk z

which yields the stated formula after simplification. O

Lemma 11. Let H, and Hz be the harmonic lifting functions from Lemma @ The critical-point coefficients

for the frequency of price adjustment are

(rg —r1)(1 —emh)

0r = —hl (2) {V L — ezt * ﬁ} "
_ ry — 1) (1 —em? 7
Pz = —hy(2) {V. = eri)E erit : " ﬂ-} "

Proof. The frequency perturbation from the boundary-lifting function is
Fbc(t) = Vaxilbc (Q, t) + 771-i7'bc(£a t) - Vaxilbc(-f; t) - 7T"}Albc(jjv t)

Substituting hpe(z,t) = —h’ (2)2(t)Hy(x) + .y (Z)Z(t)Hz () and using the boundary values H,(z) = 1,
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H,(Z) =0, Hz(z) =0, Hz(Z) = —1:

Fe(t) = =Rl (@)2(t) [vH, () + 7 — v, ()]

+ W (2)2(t) [VHE (z) — vHE(2) + 7]

This gives Foe(t) = ppi(t) — @z (t) with coefficients as defined.

The explicit formulas follow by substituting the derivatives from Lemma [9] and simplifying:

— (T277’1)£ _ _ rol
/ 1=y _ T2 —T1€ (rg —r1)e
Hﬁ(g) o Hﬁ(x) - 1 — e(r2—r1)¢
(re—r)(1 - ert)
- 1 _ 6(’)”277“1)@

and similarly for H.(z) — HL(Z). O

E Dynamic Distribution in Discrete Time

This section derives the discrete-time dynamics of the distribution perturbation ﬁ(x,t), building on the

continuous-time solution in Lemma |2 These results are used to construct the plot in Figure

E.1 Discrete-Time Recursion for the Distribution

Proposition 8. The discrete time approzimation of the interior distribution perturbation from Lemmalg is
o0
hint (.’E, t) = Z hint,n(xa t)
n=1

where each modal contribution admits the recursive approximation (with unit time step)

Bint n(2,1) = @ p(2) F, + @ar (1) AL} + W, (2) TH g0 (®) A2y — R (T) wh z.0(2) AZy + 0, }Alint’n(l’, t—1)

(99)
where 0,, = e <FEn and Afy = ), — §4—1 denotes the first difference. The coefficient functions are
@Wrn(T) = VkFPE (T, 77) (100)
ww*,n(l‘) = Fsst,n(x) + Fss)\KFE,n/ ’VKFE,n(xa y)JLE" (y) dy (101)
V z
WH 2,0 (T) = Aiay'YKFE,n(xa@ (102)
KFEn
v
WHzn(T) = h Oy YK FEn (T, T) (103)
KFEn

with @y, (x) as defined in Lemma @
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Proof. Lemma [2| gives the interior component as an integral over time-derivatives of the forcing variables.
To convert to a recursion in levels, apply integration by parts to each term.
Consider the boundary term f e NN (2)2 (T)@w g0 () dT where wp 4 n(z) = 0y YK FE (T, 2).

Integration by parts with u = (1) and dv = e~ *¢=7)dr yields

t
/ eI @) () {0y vic () d
0

1 t
= by (2)vdy vk FEn (T, 2) - + [ Mg (7 )}0 + (decayed integral)

A
t
= I (@)vOy K PE (T, ) - (x e i 0)+/ e Mg (r )dr) /A
0
Combined with the initial condition term h’, (E)@(O)WH&,n(x)e_)‘t from Lemma the 6_)\ti(0) ferms cancel,

leaving an integral over levels.

The discrete-time approximation (Riemann sum with step At = 1) of an integral fot e A=y (7) dr is

t—1 -2
SNy (s) my(t) + e NS eIy (s)
s=0 s=0

Recognizing the second term as 6,, times the integral at ¢ — 1, and noting that the cumulative sum can be

written in terms of differences:

t t t—1
Ze—k(t—s)y(s) — Ze—k(t—s)Ays + 6, Ze—)\(t—l—s)y(s)
s=0 s=0 s=0

where the first-difference formulation isolates the new contribution at time ¢. This yields the recursion

(99)- O

E.2 Mass Conservation

The distribution perturbation iz(m, t) represents the change in the density of firms at each price gap z. Since

the total mass of firms is fixed at unity, the perturbation must integrate to zero for all ¢:
A~ i ~
M(t) = / h(z,t)dz =0 (104)
x
The mass decomposes into critical-point and interior components:
M (t) = Meie (t) + Ming(t) (105)

where

Mot (t) = —hly (2)2(8) 0110 + Wy (2)2(0) b5 — Fos®™ ()95 (106)
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and the critical-point mass coefficients are

ﬁH’EE/ H,(z)dz, ﬁH’iE/ Hz(x)dx, 19JE/ Jox (1) dx (107)

The interior mass decomposes as Mim(t) =>. Mint,n(t), where each component satisfies the recursion
Mint,n,t = AtﬁF,'rLPA’t + ﬁz*’,nAir + ﬁg/,nAit - ﬂi’,nA-%t + onMint,n,t—At (108)

with interior mass coefficients

T T T
Vg = / W (z)de, Ogep = Fss/ wyn(z)de, Dy, = h;s@)/ i pn(T)de, Yz, =N, (T / WH zn(
z z s
(109)
E.2.1 Determining F via Mass Conservation

The constraint M (t) = 0 provides an alternative method for computing the frequency of price adjustment.

Imposing Mcrit(t) +> . Mint’n(t) = 0 and solving for Fy:

Proposition 9 (F from mass conservation). The frequency of price adjustment satisfies

_Mcrit,t - Zn |:19m*/ nA + ﬁm nAl't 19i/,nA‘%t + enMint,n,tht]

F, = 110
¢ At Op, (110)
where Mcrim =—hl (2)Z,0m, + I} (T )xtﬁHm Fo&fdy.
Proof. From ([104)), Mcrim +> ., Mint,n’t = 0. Substituting (108)) and collecting F, terms:
Mcrit,t + Atﬁ‘t Z 19F,n + Z |:19w*’,nAi': + ﬁ@’,nA@t - ﬁf’,nA-%t + enMint,n,tht} =0
n n
Solving for F} yields (T10). O

Lemma 12 (Completeness relation for primed mass coefficients). The primed interior mass coefficients

satisfy the completeness relations

> oo =Fody, Y Vwn = b (@)0n g, 219 =N (2)0m s (111)
n=1 n=1

where ¥y, Uz, Vuz are the critical-point mass coefficients from (107)).

Proof. The mass conservation constraint Mcrit,t + Zn Mint’n,t = 0 must hold for arbitrary boundary per-
turbations. Consider a step change in boundaries at t = 0 starting from steady state, so that Azj = g,

Az = &y, Ao = To, and Mint’n,,m =0. Set Fy =0 (no flow perturbation at impact).
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The interior mass at t = 0 is:

N N ok R N
Mint,O = E Mint,n,O = E ﬁx*’,nxo + § ﬁg’,n&o - § ﬁz',nﬂﬁo
n n n n

The critical mass at ¢t = 0 from (106) is:

Meyito = =R (2)0p 220 + Ry (Z)0m 220 — FssV 35,
Imposing Mcm,o + Mmt,o = 0 and collecting terms by boundary variable:
By = Feldg+ Y Vg =0
To: — hlss@)ﬁH,z + Z Vyrn =0
Zo: W (@)0ps— Y Varn =0
n

Since mass conservation must hold for arbitrary (25, &, Zo), each coefficient equation must vanish separately,

yielding (111]). O

E.2.2 Relating Mass Coefficients to Frequency Coefficients

The mass-based approach is connected to the flux-based ¢ coefficients through spatial integration.

Lemma 13 (Relationship between 9 and & coefficients). The mass coefficients satisfy

199:*’,71 = fw*’;n':v—)la ﬂg’,n = g@’,n‘az—ﬂy ﬁiﬂn = gi’7n|w—)l (112)

where the notation &|,—1 means replacing the x weighting in the integral by 1.

Proof. By definition, &+, = Ffjmen(x) dx while Vg, = Ff;c @y n(z)dz. The relation is the same
with and without the x weighting. O

Lemma 14 (Relationship between 9p and pg). The frequency forcing coefficients satisfy
oo
> Opa=1 (113)
n=1

Proof. By definition, Jp, = ff wr(z)de = f: Yk FEn(T,z*)dz. By the eigenfunction completeness

relation ) Yxren(2,y) = 6(z —y):

ZﬁF,n :/ ZVKFE,n(%x*)dx =/ 0(x—a*)de =1
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O

The mass conservation approach (110) and the flux-based approach are equivalent. The KFE flux con-

dition at the boundaries gives

F(t)=v (al.h@, t) — 8,h(z, t)) + 7 (WL, (2)3(t) — by (2)a(t))

Integrating the KFE 8;h = v02h —78,h— Ch+ Fé(z—x*) over [z, ] and using mass conservation i hdz = 0:

0= v (8:h(2) - () — 7 (h(@) = b)) + F

With the linearized boundary conditions h(z) = —h, (z)& and h(z) = —h.,(Z)Z, this recovers the flux

formula. The two approaches encode the same physical constraint from different perspectives: mass conser-

vation versus boundary flux balance.

E.2.3 Analytical Formulas for Mass Coefficients

The mass coefficients (109) require spatial integrals over the eigenfunction projections without the -

weighting used in the £ coefficients. Define the fundamental integral

I, = /J e " sin(wy(z — z)) do (114)

where a = 7/(2v) and w,, = nw /L.
Lemma 15. The integral Z,, has the closed form

Wn

1, = ———
a? 4+ w?

(e —(=1)"e ") (115)

Proof. Using the standard integral [ e®*sin(bz) dz = %(a sin(bzx) — bcos(bx)):

7, = / e **sin(wy(z — z)) dw

- [as_:; (—asin(wy (z — z)) — wy, cos(wn(z — 2)))

z

At z = z: sin(0) = 0, cos(0) = 1, giving —w,e *%/(a? + w?). At z = 7 sin(w,f) = sin(nm) = 0,
cos(wpl) = (=1)", giving —w, (—1)"e~°%/(a?® + w?2). The result follows. O
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Proposition 10. The interior mass coefficients (109)) are:

2 "
Vg = 7 sin(wy (z* — z))e*” I, (116)
2wn,
Vo = Woo(@) s =0T, (117)
=’ AkFEn £
v 2wn,

Vi = higs (7) (—1)"e*"I, (118)

AkFEn £
The coefficient ¥4« , requires numerical integration over the lifting function Jy-.
Proof. By definition,

T z 2 .
Vpp = / YkFEn (T, ") de = / Zea(m =) sin(wy (x — z)) sin(wp (% — 2)) dz

x

Factoring out terms independent of x:

2 - [T 2 .
Vpn = —sin(wy(z* — z))e*® / e~ sin(wy(z — z)) de = - sin(w, (™ — x))e*” I,

14 14

The projection kernel is w4 »(z) = Oy Yk FER(T, y)|y=x. From

/\K;E,n
2 . .
Oy vk FER(T,Y) = Zeo‘(y_””) sin(wy, (x — g))(a sin(wp (y — x)) + wy, cos(wy (y — g)))

evaluating at y = 2 where sin(0) = 0 and cos(0) = 1:

2wn a(x—x) 3
Oy vk rE (T, 2) = e sin(w, (v — z))

Thus

v 2wn,
= gz

AkFEn £

)
ot = W) [ 2 i (o - ) i = ()
KFEn Ja

Similarly, at y =  where sin(w,¢) = 0 and cos(w,f) = (—1)™:

2w, Toz) .
Oy vk FER(T,T) = %(—1)”60‘($ x) sin(wy, (z — z))
giving
2, .
it n = (7)o " (—1)"e*7T,,
AkFEn £

F Impact Effects

This section derives the analytical instantaneous responses of aggregate variables to marginal cost shocks.
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F.1 [Initial Condition and Boundary Discontinuity

The initial condition iz(:c, 0) = 0 holds on the interior of the inaction region, i.e., for x € (z,z). However,
the linearized absorbing boundary conditions require h(z,t) = —h, (2)2(t) and h(z,t) = —h, (T)Z(t)
for t > 0. When 2(0) # 0 or z(0) # 0, these boundary values are non-zero while the interior remains at zero,
creating a discontinuity between the interior and the boundaries as ¢ — 0, which I denote as t = 0F.

Since h(z,0") = 0 almost everywhere, the Lebesgue integral fj  h(x,0)dz = 0, so X(0) = 0.

When the aggregate shock arrives at ¢ = 0, no firm has yet had time to adjust its price, so iL((E, 0) =0on
the open interior as stated in . Because this exact initial condition is uniformly zero, it is uninformative
about the subsequent dynamics. Therefore this section characterize the limiting initial condition at ¢t = 0%,
which is zero almost everywhere, but with three spatial discontinuities corresponding to the three critical
points.

At each boundary, the linearized Dirichlet condition imposes h(z,t) = —h., (z)&(t) and h(z,t) =
—h.,(z)Z(t) for t > 0. These values are nonzero while the interior remains at zero as t — 0, producing two
spatial discontinuities:

h(z,0%) = =1 (@)&(0), h(z",0")=0;  h@,0")=0, h(@07)=—-hl(2)70)  (119)
Why? If a shock causes the lower boundary to shift right (Z(0) > 0), the old boundary point z is now
outside the inaction region, and the density will fall in the neighborhood of that point as firms exit. But
this linearization corresponds to a marginal change in the boundary, so on impact that marginal change only
affects the density at the boundary itself. A symmetric argument applies at Z: the new boundary shifts
to the right, so the density increases. Figure [J] demonstrates by plotting a hypothetical example under the
baseline Calvo-plus calibration where all critical points shift to the right by the same quantity. In the left
panel, the initial condition (in black) has discontinuities at the boundaries.

At the reset point, the perturbation #*(0) > 0 means that adjusting firms now reset to a location slightly
right of the old z*. Since a flow Fs of firms per unit time resets to x*, the perturbation removes density just
below z* and deposits it just above. This effect shows up as the ¢'(z — z*) term in the KFE (20). Again,
Figure |§| plots this discontinuity in the ¢ = 0T initial condition, except the discontinuity at z* is different
when taking the limit from the right versus from the left.

To understand this dipole structure, consider again the distribution’s decomposition in Lemma [2] The
critical-point component carries the lifting function J,- from Lemma [6, which jumps at 2* by [Jy+]. =

—1/v. The boundary-harmonic functions H, and Hz are smooth at z*, so fzcm inherits the full jump:
[hcrit]z* (t) = ssi*(t) [Jm*]x* = (120)

Meanwhile, the interior component izint(m, t) is smooth at z* for all ¢ > 0. Therefore the total jump remains
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Decomposition at t =0

Limiting initial condition h(z,0")

200 F I 4 200 + <g 1
" ‘
150 ! 1 150 1
I
I
100 i 1 100 1
|
I
50 | 1 50 1
= ! H, ()70 z
S Ll . 55 (D) )8 | 2 .l |
5 N ERREE Lo 5
= p e =7 a
-50 : 1 -50 | 1
I
-100 | 1 -100 - 1
I
I
-150 F i 1 150 - 1
x* 2
-200 F 1 200 - 1
02 015 -01 005 0 005 01 015 02 02 015 -01 005 0 005 01 015 02
xT xT

Notes: Left panel: the distribution perturbation at t = 07, showing all three spatial discontinuities. Boundary values
(filled circles) from the linearized absorbing conditions ; the dipole at z* (open circles with directional whiskers)
has different one-sided limits;vertical bars mark each discontinuity. Right panel: the three components of fzcm (z,0)
from together with the interior component iLim (z,0). The steady state corresponds to the Calvo-plus calibration.
All quantities normalized by a unit shock (2(0) = £(0) = £*(0) = 1).

Figure 9: Limiting initial condition lAz(:lc7 07) and its critical-point decomposition

~ ~

[z () = [herit) o= (t) = Fos&*(t) /v for t > 0.

F.2 TImpact Effect on the Frequency of Price Adjustment

The impact effect on the FPA requires careful treatment because the spatial derivatives appearing in the
flux formula become singular when boundary conditions jump discontinuously.

For computing the singular part of the diffusive flux vy h, it is helpful to focus on the limiting behavior
near each boundary separately, because for a small time interval ¢ = At after the shock, the distribution’s
behavior at each critical point has negligible effects on the others. Thus, for small At, away from z* the

distribution is well described by the homogeneous component of the perturbed KFE:
[t~0, z <" x> a": Oh(x,t) = vd2h(x,t) + TOh(x,t) — Ch(z,t) (121)

Then, it is useful to transform this homogeneous KFE into the canonical heat equation by substituting
y = x — z and writing

w(y, t) = e/ @WHE/ @Oy 1 g 1) (122)

which satisfies d,w(y,t) = v02w(y,t) on [0,Z — z]. Then in order to consider single boundaries alone, which

is valid for At small, T will instead analyze this solution on the half line y € [0, c0) with boundary condition
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w(0,t) = —hL (x)Z(t). This is a useful strategy because this PDE has a known Solutionﬁ

Property 4 (Heat equation on the half-line). If w(y,t) satisfies the heat equation Jyw = u@iw on the
half-line y > 0 with initial condition w(y,0) =0 and constant Dirichlet boundary condition w(0,t) = wq for

t > 0. The solution is

w(y, t) = wy erfc ( ) (123)

Y
vavt
where erfc(z) = % f:o e=¢ d€ is the complementary error function. The spatial derivative at the boundary
18

Wo
Vvt

Property [f] allows for straightforward characterization of the derivative in a neighborhood near the bound-

ary. Lemma [16] follows:

d,w(0,t) = —

(124)

Lemma 16. If the boundary perturbations (t) and Z(t) are continuous with 2(0) and Z(0) finite, and At
is sufficiently small, then the FPA at time At is approximately

AN = || (W (2)E(AY) + KL (0)3(A0) + 5 (W, (2)F(A0) - bl (@)a(AD) (125)

Proof. Near the lower boundary, for small time ¢ = At, the transformed distribution w(x,t) satisfies (by

Property
T—z
w(r — x, At) = =k ()2 (At) erfc <) +o(1
(@ =2, 80) = h (@At erte (=) + o(1)
The approximation error is only o(1) because of the continuity /finiteness assumption on Z(¢). The spatial

his (@E(A

derivative is 0, w(0, At) = e 4 o(1). The spatial derivative relates to the original distribution by

Ouh(z,t) = 0, (e—fr/@u)(w—£>—<ﬁ2/<4u)+<>tw($ —a t))

- _Zie—fr/(zu)<w—£>—<ﬁ2/<4u>+otw($ C )+ e @D~ WOz — 2 t)
14

Evaluate at the lower boundary:

Ouh(z,t) = —ie*(#/(‘*”)*ot(—h’ss(g))@(t) + ef(frz/(4v)+c)tayw(0’t)

2v
which for small ¢ = At is

his (2)2(At)

8;,;%@, At) = %e_(?ﬁ/(4u)+C)Ath/SS(£)@(At) + e (@2 /(4v)+0)At S
v

+o(1)

— 0280 (5 + =) o)

23See (Carslaw and Jaeger} [1959, Section 2.4) or (Polyanin} [2001} Section 3.1).
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Near the upper boundary, instead use the change of variable y = — x > 0 to write

W(y,t) = e ™/ @HE /@Oty 7y 4
so that 9y = vd,w. If y > 0 with boundary condition w(0,t) = —h/,(2)Z(t), then for small time ¢ = At

w(T — z, At) = —hl (Z)Z(At) erfc (%) +o(1)

b (@) (A

with spatial derivative 9,w(0, At) = NCoY: by o(1). The spatial derivative relates to the original distri-

bution by

Bh(z,t) = 0, (eﬁ/@u)<at»—w>—(ﬁ2/<4u>+<>t@(5c _ t))

- _QEeﬁ/@u)(i—z>—<ﬁ2/<4u>+c>t@(f C ) — I/ EED - RO iz — 2 t)
14

Evaluate at the upper boundary:

Dph(z,t) = _216*(7?2/(41/)+C)t(_h/53(j))é(t) _ 67(ﬁ2/<4y)+<)t3yﬁ)(0,t)
v

which for small t = At is

T

hi, (2)2(At)

azh(f,At) = 56*(7?2/(4u)+C)Ath/SS(f)i(At) (@ /() +) At e +o(1)
Uz
PPN 0 1
= h, (Z)z(At) 55~ Ny +0(1)

The FPA formula is F(t) = vO,h(z, t) + 7h(z, t) — vO,h(z,t) — Th(z,t). The diffusive contributions

are:
T v

v h(z, At) = b’ (z)Z(At) ( 5+ mt) +0(1)

T v

0, (T, At) = —I, (T)F(At) (2 m) +o(1) = I (2)F(At) (—g + WZ t) +o(1)

i N — 1 (2)d T LA BN AAY- T2
v h(z, At) — voh(z, At) = bl (z)2(At) (2 + 7rAt> R, (Z)x(At) ( 5 7rAt> +o(1)
The drift terms follow from the boundary conditions: 7h(z, At)—7h(z, At) = 7 (=R, (2)Z(AL) + K, (Z)Z(AL)).

Summing all contributions:

Pan) = (@) (5 42 -7 + i @atan (-

— @80 (\f 2 - § ) + @i ([ + 5 ) ol
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Rearranging gives (125)).
O

Lemma [16| shows that the initial FPA is infinite: lima;_.q F(At) = +00, where the sign depends on the

sign of (hl,(z)2(0) + h.,(z)z(0)). This is because the immediate shift of the boundaries causes firms to
reset prices immediately. For large shocks, this leads to a non-zero mass of resetting firms. In this perturbed
economy, the marginal shock causes a zero mass of firms to reset, but the rate remains infinite. However, it

is only instantaneously singular; the FPA falls rapidly with At¢, and is integrable.

Corollary 1. For a permanent marginal cost increase of size k, if At and 7 are sufficiently small, then the

FPA at time At is approzimately

Pa0 ~ (| 2 (@) + () +

and the average FPA over the interval is

180 = (2 (1,0 + () + 5 (1,(0) = 1L, (0) )

Proof. When trend inflation is near zero, the value function perturbation at the critical points is zero (Alvarez

(1,(@) = 1s(0) )

[NRI]]

et al.l [2023)) so the perturbed critical points (e.g. equation ) depend only on the present value of future
marginal costs. The marginal cost change is permanent, so the critical points move permanently. Because
of long-run neutrality (Definition [2)) the critical points must all increase by .

Plug this change into the flow equation from Lemma

(AL | (W) + B (2)5) + 5 (L () — e (2))

Collect terms to yield the desired expression.

Then, evaluate the integral:

7 (V5 0+ e + 5 00~ o ) e = (2 0t 0 4

This is the cumulative price adjustment. Dividing by At gives the average FPA.

N |3

(ho(7) - h;s<x>>) Atx

G Price Change Statistics

This section derives a number of price change statistics in the steady state, which are used for calibrating

the model.
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G.1 Steady State Frequency of Price Adjustment

This subsection derives the components of the steady-state frequency of price adjustment F, in terms of
primitive parameters and the steady-state distribution.

Per equation , the steady-state FPA is given by
FSS = Vhlss(g) _Vh‘;s<'i‘)+< (126)

Each component of this equation corresponds to a different type of price adjustment: F, = vh],(z) denotes
resets from the lower boundary, Fz = —vh/, (%) denotes resets from the upper boundary, and Fr = ¢ denotes

random resets. Together, the steady-state FPA is decomposed as

Foo= Fy+ Fr + F (127)

G.1.1 General Case with Drift

For general @ # 0, the steady-state distribution has piecewise exponential form with shared roots 71,7y of

the characteristic equation:

T2 =

—7 £+ /72 4+ 4¢ (128)
2v

The absorbing boundary conditions yield and , reducing the system to two unknowns (Br, Bg)
determined by continuity at * and normalization.

Using 7 the derivative at the lower boundary simplifies:
hl (z) = Aprie™E + Brroe™% = Bre% (rz — rle(”_”)@) (129)
Similarly, using :
b, (Z) = Agrie™" + Brroe™" = Bre™" (7“2 - rle(”_rz)i) (130)

The frequency components are:

F£ = I/BLGWE (TQ - Tle(ﬁ—Tz)z) (131)
F; = —vBre™” (rz - r1e(”_""‘)i) (132)

where the coefficients By, and Bg are determined by the remaining two linear conditions. This decomposition
shows how frequency depends on the distribution shape: when ( is small, most adjustments occur at the

boundaries; when ( is large, random adjustments dominate.
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G.1.2 Zero-Drift Special Case

When 7 = 0, symmetry implies 2}, = 0 and Z4s = —2

ss = ¢/2. The roots become 71 9 = =£s,4 where

$.4 = 1/C/v. The distribution is symmetric: h’(z) = —h, (Z), so:
Fp= Fe=vby (), Fa= 20 (2) +C (134)
From the boundary condition h(—¢/2) = 0 with hr(x) = Ape®=4® + Bre™=4%:
A = —Bpe %=t
Thus hy(z) = By, (e75=4% — e~ %=dfe%=4%) = 2B e~ =4*/2 sinh(s.q(z + £/2)) for x € [—£/2,0]. The derivative

at x = —0/2 is:
B (—0/2) = 2Bre =425,

Normalization ffﬁz hss(z) dz = 1 and symmetry determine

B, — Szd
L de—s=at/2(cosh(s,ql/2) — 1)
Therefore:
F AvBre® al/2 + C Vsid + g CCOSh(52d6/2) (135)
ss — 4V e “F¢ S, - — ¢ —_ > T\ 7
) o ¢ cosh(s,q¢/2) — 1 cosh(s,q0/2) — 1
with components:
F,=F; - ‘ Fo=¢ (136)

2(cosh(s,q€/2) — 1)’

Note that these sum to Fl: m +( = % The fraction of adjustments from each

boundary is:

Fo  Fp 1 Fe  cosh(s.ql/2) — 1 (137)
ws  Fss  2cosh(s.ql/2)’ F,s  cosh(s.q//2)

=

G.2 Average Price Adjustment

The adjustment from the lower boundary is always =* — z, while the adjustment from the upper boundary
is always & — x*. These occur at frequencies F, and Fz respectively. When a firm with price gap z receives
a random adjustment opportunity at rate (, then its adjustment is z* — x.

Therefore, the mean adjustment is

Pi,adj = E[z — 2™ |adjust] = Fl (Fw(x* —z)+ Fr(z" —2) + C/x(x* — 2)hss(x) dx) (138)
1 % * _ *
=7 (Fp(a* — 2) + F3(z* — 7) + ((a" — X))
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where X is the average price gap.

In special case of zero drift (7 = 0), the distribution is symmetric so the average price adjustment is zero.

G.3 Variance of Price Adjustments

The second moment of price adjustment is
pi2.0d; = E[(z* — x)*|adjust] = % <Fx(x* —2)? + Fe(a* —2)% + C/:(x* - x)zhss(x)dx> (139)
The variance of price adjustments is then
Var(z™ — z|adjust) = po,adj — uiadj (140)

For algebraic purposes, we can decompose the weighted second moment contributions:

Hoadja = g (z—a")? (141)

H2adiz = 57— 27)° (142)
— C 7 *\2

H2.8di¢ = Fo- (x — ") hss(x) da (143)

so that ]E[(.I* - as)2|adjust] = W2,adj,z + H2,adj,z T H2,adj,C-

G.3.1 Zero-Drift Special Case

When 7 = 0, symmetry gives 2* = 0, Z = —z = ¢/2, and F, = F;. The mean adjustment vanishes by

symmetry:
1
H1,adj = F

SS

[Fu(0— (—€/2)) + F5(0 — £/2) + ((0— 0)] =0 (144)

where the average price gap X = ffZQ xhss(x) dr = 0 by symmetry. Therefore, the variance equals the

second moment.

The second moment contributions from boundaries are equal. Using (137)), Fy/Fss = 1/(2 cosh(s,q¢/2)):

F, (¢/2)? 02
- L= 2)2 — —
H2adjz = H2,adj,7 Fos (¢/2) 2cosh(s.qf/2)  8cosh(s,ql/2)

(145)

For the random adjustment term, using the symmetric density hp () = 527z sinh(sza(z+£/2)):

/2 2 (O
/ 2?hgs(z) do = 2?hy () dx

H2,adj,¢ = &=
adie F. —£/2 Fss —0/2

SS
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Substituting u = x + ¢/2 so that = u — £/2 and integrating from ©v =0 to u = £/2:

0 /2
2h(x) do = Pd / — £/2)” sinh(s.qu) d
/5/2 x*hr(z) dx Scosh(s-al/2) = 1) J, (u — £/2)* sinh(s,qu) du

Using integration by parts twice, this evaluates to:

0 1 e
o1 146
/_e/z ©hi () do s2qa  8(cosh(szal/2) — 1) ()

Therefore, the random adjustment contribution is:

¢ [2 72
o _ 14
H2.adj¢ = s2,  4(cosh(s.ql/2) —1) (147)

z

where (/Fss = (cosh(s.qf/2) — 1)/ cosh(s.qf/2) = 1 — sech(s,q4¢/2).
The variance (which equals the second moment in this symmetric case) simplifies elegantly. Using s?; =

(/v and writing C' = cosh(s,qf/2) for brevity:

2 C-1]2 2
SR { } 4<c—1>]
2 2(C—-1) 2  2(cosh(s.ql/2) — 1)
el 52,0 4C  s2, cosh(s.ql/2)

(148)

or equivalently:

Var(z* — x|adjust) = 2?1/ (1 —sech(s.qf/2)) (149)

This decomposition is useful for calibrating the model to microdata on the distribution of price changes,

distinguishing between adjustments driven by boundary crossings versus random opportunities.

G.4 Kurtosis of Price Adjustments

The kurtosis of price adjustments characterizes the tail behavior of the distribution of price changes. The

kurtosis is given by

E[(z* — 2 — p11,aqj)*|adjust]
Var(z* — x|adjust)

Kurt(x — z*|adjust) = (150)

The denominator is given by equation ((140) while the numerator is

E[(z* —x — ulladj)4|adjust] =

x

1 * * =
F(Fx(x a— )+ (e —x—u17adj>4+c/
SS xT

(2" —x— u17adj)4hss(x)dx> (151)
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G.4.1 Zero-Drift Special Case

When 7 = 0, symmetry gives 2* = 0, = —z = ¢/2, and F, = F;. Since p1 aqj = 0 by symmetry, the

centered moments equal the raw moments. The kurtosis simplifies to:

Kurt(z* — z|adjust) = w (152)

2,adj

The fourth moment contributions from boundaries are equal. Using (137):

F, (€/2)% s
adj,z — adj, 7 — 5 l/2 4= =
Haadjz = Ha,adj, FSS( /2) 2cosh(s.qf/2)  32cosh(s,ql/2)

(153)

For the random adjustment term, using the symmetric density:

¢ £/2 . ) 2 0 . )
Ha,adj,c = —/ T hes(x) dx = z*hy(x) dz
! C Ess _2/2 ( Es‘s _[/2 (

Using the same integration by parts technique as for the second moment:

/0 Uy () di = 12 o 302 (154)
—¢)2 LA = st 32(cosh(s.ql/2) —1)  2s2,(cosh(s.ql/2) — 1)

Therefore, the random adjustment contribution is:

(155)

¢ {24 A 302 }
Ha,adj,¢ = 4

F st 16(cosh(s.ql/2) —1)  s2,(cosh(s.qf/2) — 1)

where (/Fss = (cosh(s.qf/2) — 1)/ cosh(s.ql/2).

The total fourth moment simplifies similarly to the variance. Writing C' = cosh(s,qf/2) as before:

._£+C_1 24 a _ 302 (156)
Hradi =760 T T |55, T 16(C—1) 2,00 —1)
which simplifies to:
24(cosh(s,qf/2) — 1) 302 2412 302y
i = - - 1 —sech(s,qf/2) — ——Y (1
Haad; s, cosh(s.ql/2) 2, cosh(s.ql/2) ¢? (1 = sech(szat/2)) ¢ cosh(s.ql/2) (157)

The kurtosis depends on the relative importance of boundary versus random adjustments. When ( is
small (mostly boundary adjustments), the distribution has mass concentrated at +¢/2, yielding high kurtosis.

When ( is large (mostly random adjustments from the interior), kurtosis is lower.
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H Computational Appendix

This appendix describes the numerical implementation of the model solution. For the purposes of speed and

clarity, it derives a number of integrals analytically. Then it lays out the computational algorithm.

H.1 Analytical integrals against the stationary distribution

This subsection records the closed-form integral formulas used to calculate moments from the piecewise-
exponential stationary density. These solutions take the value function’s piecewise coefficients (A, Br,, Ar, Br)
and shared roots (r1,72) as known.

The common building blocks for integrals appearing in Lemma 1 and subsequent propositions are
1. mass on a subinterval: Qqla,b] = f: hss(x) dx

2. first moment: Q[a, b] = f; Thes(x) dx

3. second moment (quadratic kernel): Qz[a,b] = f; 2%hgs(x) do

All of these are linear combinations of the basic exponential moments on an interval [a,b]. For r € R

define

b ra
e’ —e
b — 7 #0
T
Iy(r;a,b) E/ e dr =
a
b—a r=20
b b rb ra rb ra
e — qe e’ —e
Li(r;a,b) = | ze™dx = . 5
a r r
b b2 rb 2 _ra rb ra rb ra
e —a“e be™ — ae e’ —e
I(r;a,b) = 22e™ dx = -2 + 2
2\, &, 2 3
a T r r

For the full inaction region we simply sum the contributions from the left and right pieces. For example
[z, 2] = AL (ri;2,2%) + Brli(ro; 2, 2°) + Arli(r1;2,T) + Brli(r2; 27, %)

For a polynomial times an exponential, ffp(x)em dx with p(z) = az? + Bz + v, the result is

b
/ p(x)e™dx = aly(r;a,b) + BI1(r;a,b) + vIo(r; a,b)

H.1.1 Analytical derivation of O¢c,(z) and ©, ,(x)

Recall from Lemma [I] that

T

YaIB (T, Y)Yy dy Opn(x) = —C/ Y B (%, Y) dYy+1v0y Y 7B .m (T, ) —vOyYH 1B n (T, T)
xT

T

GA/[C,n(x) = —2B/

T

74



From and the relation vy 5o (%,y) = Yk rEn(y,x) we have

2 x, _
’YHJB;n(‘/L'7y) = = 65(1'_!/) sin (mr_(ysc)
r—x

) sin (mr(x — x))
T—z
Separating the z- and y-dependence, define the constant (in y)

2 7 —
Gn(x) = = e2v " sin (nﬂ'_(m $>>
T—x T —x
so that
YHIB (T, Yy) = Gn(2) e %Y sin (mr_(y — x))
T—z
We compute

Onon(z) = —2Bgn(x)/ e~ 37Y sin (mrj(y_—wx)) ydy
This integral has the form

/ Y e~ %Y gin <n7r(y — z)) dy
z rT—Z
Using the identity sin(f) =

i _o—i0

21

with 6 = %7 we obtain

(=) L

(eig%‘ﬁ(y*@ _ et
T—x 21

Thus the integral becomes a linear combination of

nw

z rT—I
which reduces to
xr
/ yedy = I(s;z, )
z

where I and I; are the elementary integrals defined above.

Specifically, with s+ = f% =+ iw,, and the phase factors

we have

d):ﬁ: = e:':lwn73

2
Define the single integral (over the full domain [z, Z])

Orrcn(z) = —2BG, (x) - Re [ (6L (s53:2.7) — D4 Iy (s, m))]

1 ; '
Ip'C = 2 {e_l””lfl(S%L z) —e“rth(s-;z, j)}
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where s+ = —o= £ iw,. Then

Oncn(z) = —2BG,(z) Re [J,IYIC}

Similarly for ©, ,,(z), the integral term (without the stationary distribution h(y)) is

/ YHIBA(T,y) dy = Gn(x)J;,

where

. 1
J,

"= 5 {e_i““’§10(8+;g, T) —e“nEly(s_;x, 7)

The boundary terms 0yYr B, (z,2) and Oy ymBn(x, ) are evaluated directly from the formula for v s 5.

H.1.2 Analytic computation of y and = coefficients

From Proposition [2| the boundary shift coefficients are

1 1
) Bern = — 35—y Oun (@),

ey = —— z* = —
X = g ) M) S =

and similarly for xz n, Xz,n, Zz,n, Zzn-

To compute ©/ x), differentiate the expression derived above with respect to x:
MCmn
MC
/]\/[C,n(x) = —QBQ;(I) Re [Jn ] )

where

Similarly for ©/ , (x).

v,m

H.1.3 Analytical derivation of £ coefficients

This section derives analytical expressions for the £ coefficients defined in Theorem Throughout, let

=7 —z, w, =nn/l, and a = 7/(2v).

Lemma 17. The coefficients Eppn, Eox ny xn, and &z, are given by

Epm = %Inem* sin(wy (z* — z)) (158)
evin = Fuu 2T [asin(on(u” — 2)) +wn cos(in(a* — )] (150)
§on = *Vh;s(z)%lnea&wn (160)
an = fyh’ss(a‘s)%lneaiwn(*l)" (161)
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where I, = fj xe " sin(wy, (x — x))dx has the closed-form expression

7, - <" [<x+ 20‘71) wn (1= (=1)"e™) — w, (—1)"e=" (162)

a? 4+ w?
Proof. From Proposition [2], the coefficients are defined as integrals of the KFE Green’s function components.

Recall the definition of the Green’s function component from Lemma
2 a(y—z) o :
YK FEnR(T,Y) = ze Y= sin(wy, (z — z)) sin(wn(y — z))

using the definitions of ¢, w,, and «.

The coefficient {p , is defined as &g, = ff Yk FE (T, x*)dx Substituting vk pe,(z, 2):

T

2 .
Erm = Zeo‘” sin(wy, (z* — g))/ xe” “sin(wy, (x — x))dx
x

The integral is exactly J,, yielding the result.
The coefficient &, ,, is defined as &+ ,, = Fis ff 20y Yk FE (%, x*)dz. Differentiating vk rg ,(x,y) with

respect to y:

Oy vk FER(T,Y) = ge*‘” sin(wy, (z — z)) [ae®™ sin(w, (y — x)) + e*w, cos(wy, (y — ))]

14
Evaluating at y = x*:

OyvxFER(T,2") = %e*a"’” sin(wy, (x — g))e‘”* [asin(wy, (2" — 2)) + wy, cos(wy (2% — z))]

Substituting into the integral:

x

Exrm = FSS%e”* [asin(wy, (2* — z)) + wy, cos(wp (z* — z))] / xe” T sin(wy, (x — z))dz

which yields the result.
The coefficients &; ,, and &z 5, involve the derivative at the boundaries. At y = z, sin(w,(y —z)) = 0 and
cos(wp(y —x)) =1, so

Oy vk FEN (T, T) = Zefaz sin(wy, (z — z))e*Fw,

Substituting into &, , = —vh],(z) f; 20y Yk FE (T, z)dr gives the result.

n

At y =z, sin(w,(y — z)) = 0 and cos(wy(y — z)) = (—1)", so

92 _
Oy Yk FEN(T,T) = —e~ “sin(wy (v — z))e“Fw, (—1)"

14

Substituting into &z, = —vh.,(T) ff 20y Yk FEn (T, Z)dz gives the result.
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To evaluate Z,,, substitute u = x — z so that x = u 4+ x and the integral becomes
‘
I, = e_al/ (u+ z)e” " sin(wpu)du
0

This separates into two standard integrals. Using the formulas

Wn
a? + w?

¢
/0 e~ " sin(wpu)du = (1—- (=" )

(since sin(w, ) = sin(nm) = 0 and cos(wpf) = (—1)™), and

/Z ue” " sin(wpu)du ¢ (—asin(wpu) — wy, cos(wpu))u + 20Wn sin(wpu)
1 n = |5 . 5 - n — Wn n S 5y ol n
0 o +wy (02 +w2)
a? — w? ¢
_ T w2) 2) cos(wnu)>} .
1 n_ —al a? — UJ% n_—al a? — w72L
T a2 +w? [—wné(—l) ¢ T @ +w? (=1)%e™ + a? + w2
1 a? — w?
_ _ng_ln—af no(1— _ln—ocl

a2+w%{w (=1)% +a2—|—w%( (=1)% )}
Combining and simplifying yields (162)). O
Lemma 18. The primed £ coefficients are

, v 2wn oz
Earn = Nos(z) ——e™I, (163)
= AxkrEn £
2w, -
Earm = hy(F) — o (1), (164)
AkFEn £
2

fm*/,n = Fsszl-n (ICL,n + ICR,n) (165)

where L,, is defined in Lemma[I7, and
Kin=Brrira [e 2T (r1 + o, z,2%) — e 2T (ro + a, 2, 7)) (166)
Krn = Brrira [e T (r1 + o, 2%,7) — e " T (ro + o, 2%, 7)) (167)

with B, = —r(z*)/[vWn(2*)], Br = —¢(z*)/[vWn(z*)] as defined in Lemmal6, and

b

T(B.a,b) = [ e sinwnly— ) dy
_ ePP(Bsin(wn (b — z)) — Wy cos(wn (b — ) — 4B sin(w, (a — ) — wy, cos(wy(a — z))) (168)
B2 + w2
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Proof. From Theorem [I| and Lemma [2] the wp functions are

v 14

@H 2,0 (T) O VKkFEN(T,Z),  ©Hzn(T)

AKFEm

Computing Oy vk rEn (T, y):
2 2) . .
Iy VK FEN(T,Y) = Zea(y_ﬁ) sin(wn (¢ — z)) [asin(wn (y — 2)) + wn cos(wn(y — 2))]

At y = a: sin(0) = 0 and cos(0) = 1, so

2wn, .
ay’YKFE,n(%Q) = Lea@_x) sin(wp, (z — z))

Thus
v 2w" azr _ —oT
= —€ e SIM{wp (X — 2
YA (wn(z —z))

@H 2,0 ()

and from &, = hl, () fj TH g0 (T)de:

2wy, e 2wy,
€ = Hule) ot [ e sinun (o - 2))de = 1y ) e,
= AkFEn = AkFEn
At y = Z: sin(nm) = 0 and cos(nw) = (—1)", so
= 2wp n_ a(T—x) o;
Oy VK FER(T,T) = - (=1)"e sin(wp, (z — z))

and &z 5, follows by the same calculation.

For &+ p, from Theorem

€w*’,n = Fss/ xw],n(x) dzx, wJ7n($> :/ ’VKFE;rL(l‘vy)Jw* (y) dy
x x

By Fubini’s theorem, swapping the order of integration:

gx*’,n = Fss/ Jw* (y) |:/ .’I?’)/KFE’n(Z‘,y) d$:| dy

The inner integral evaluates to

z 2 T 2
/ TYkFER (T, Y)de = 7 sin(wp, (y — z))e™? / xe” “sin(wy(r — z))de = 7 sin(wp, (y — x))e™Z,
Therefore B
2 T
Eovrn = Fos 5 Tn / S (y) sin(wn (y — 2))e™ dy
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Since Jg-(y) is piecewise with J,«(y) = By (y) for y < 2* and Jo-(y) = BryYz(y) for y > z* (from
Lemma @, and ) (y) = r1re(erW=2) — er2(0=2)) 4l (y) = ryry(emt W) — ¢72(U=2)) the integral splits into
Kin + Kgn. Each term involves integrals of the form [ ¥ sin(w, (y — z))dy, which evaluate to (I68). O

Lemma 19 (Sum of g, /AxrEn). The eigenvalue-weighted sum of the g coefficients equals the steady-

state aggregate price gap divided by the steady-state frequency:

an o X
Z)\ Fss

KFEmn

where X = ff x hss(x) dz is the steady-state aggregate price gap.

Proof. The steady-state distribution hss(x) satisfies the KFE
(( = K*)hss = Fss0(x — z¥)

where K* = v02 + 70, is the KFE differential operator. The Green’s function (resolvent) satisfies (¢ —

K:)G(x,y) = §(x — y) with Dirichlet boundary conditions. Comparing these equations:
hss(x) =Fg- GKFE(xax*)

The eigenfunction expansion of the time-dependent Green’s function (from Lemmal2) is Gxrp(z,y,t) =
> VkFEn (T, y)e 5 Ent The resolvent (steady-state Green’s function) is obtained by integrating over
time:

- 'YKFE,n(xv y)

Grre(z,y) =/ Grre(r,y,t)dt = 3
0 KFE.n

n=1

Therefore hgg(x)/Fss = Zle YkFEn(Z, %)/ AkFE,. Integrating against x:

1 /" =1 z n
= /mxhss(x)dxzz | /mxvKFEn(xx da:—z)\L

KFE,n
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H.1.4 Analytical derivation of ¢ coefficients

Lemma 20 (Unprimed ¢ coefficients). The coefficients ©rn, Qo m, Pun, and @z, are given by

2
PEn =V Wn sin(wy (z* — z)) [e7* — e (=1)"] ™ (169)

2
Do = Fssyzwn [asin(wy, (2% — 2)) + wy, cos(wp (2% — z))] e

az”

% [e—(xg _ e—ai(_l)n] (170)
e = —VH (1) 20 1 — e ()] ()
e = —VH(7) 20 [ @) -1y 1] (172)

where { =T —z, wy, = “F, and a = 5.

Proof. From Theorem [T] and Lemma 2} the coefficients . ,, are defined by
pon =v (@, (2) — @, (7)) (173)
where the w. ,,(z) functions are defined in terms of the KFE Green’s function component:
2 aty—a) i
VKFEn(T,Y) = e sin(wn (z — z)) sin(wn (y — z))

Lemma [2| gives wp »(z) = Yk rEn (T, ). Therefore

2 .
Wr(z) = Zeo‘(‘r —x) sin(wy, (v — z)) sin(w, (* — x))
Take the derivative with respect to x:
/ 2 a(z™—x) o * .
wF,n(:c) = Ze sin(wy, (" — 2)) [—asin(w, (z — 2)) + wy, cos(wy, (x — z))]

Evaluating at = z (where sin(0) = 0 and cos(0) = 1):
/ 2 a(z™—z) o *
wFﬁn(g) = Ze T sin(wp (z* — z))wn,

Evaluating at = Z (where sin(nm) = 0 and cos(nm) = (—1)"):

Do (Z) = 5@ ) sin(w, (2% — z))wy (—1)"
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Substitute into equation (173):

2 , 2
O = Vze‘“ e”“Esin(wy, (2 — z))wp, — Z/Ze” e~ “sin(w, (2™ — z))wn (—1)"
2 . -
=vwn sin(wy, (z* — 2))e™” [e”*E — e~ *(=1)"]

Lemma [2| gives wy+ n(x) = Fos0yYrrEn (2, 2*). Computing 0yvxren (T, y):

Oy Yk FEnN(T,Y) = %e_a” sin(wp, (z — ))e™ [asin(w, (y — x)) + wy, cos(wy, (y — 2))]

At y = o™

2 .
Wy () = Fssze_(“ sin(wy, (z — z))e* [asin(w, (2 — ) + wy, cos(wy (2 — )]
Taking the derivative with respect to z and evaluating at the boundaries (using the same trigonometric

identities as before):

2 .
W () = Fog5e™ e [asin(w, (2" — z)) + wn cos(wn (z* — z))] wn

1

2
°7

_ *
—Qr ax

@ (T) = Fss—e e [asin(wy, (2" — 2)) + wy cos(wy (2% — 2))] wy (—1)"

Substitute into equation (173)):
o = Fosvwn [asin(wn(2” — 2)) + wn cos(wn (2™ - 2))] e [emE — e (-1)"]

Lemma [2| gives wg »(z) = —vh, (2)0yvxkFE (T, ). At y =2

2
Oy vk FER(T,T) = Ze*M sin(wy, (z — z))e*Fw,

Therefore:
2 .

@y n(T) = —Vh,, (g)zeaie_‘”“ sin(wy, (x — z))wn,

Taking the derivative
! / 2 ax —Qxr :
Wy (1) = —vhi, (g)ze Lne” " [—asin(wy (x — z)) + wy, cos(wp (z — 2))]

Evaluating at the boundaries:

/ / ax —ax / 2 2

@y () = —uhss(m)ze Zine “Ew,, = —Vhss(x)zwn
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@, o (7) = —vhl, (@) S Tu,e e, (~1)"

Substitute into equation (173

2 2 -
Pam = VWL (2) 03 + VA (@) 5 DR (1)

2 -
= () B2 [1 - e
Lemmagives wWzn(x) = —vh, (Z)0y vk FER(2,T). Aty =2:

92 _
Oy vk FEN(T,T) = —e~ “sin(wy (v — z))e T w, (—1)"

4
Following the same steps,
’ I 2 a(z—z), 2 n / = ! (& 2 2
wi,n(g) = _I/hss(x)ze - wn(_l) ) wz,n(x) = Vhss(x)zwn
Substitute into equation (|173)
Osn = —12N, (f)ng [ea@*@(—l)” — 1}
’ SS E n
O
Lemma 21 (Primed ¢ coefficients). The primed ¢ coefficients are
=1 (z) v Zp2 [1—(=1)"e ] (174)
Patm = Hesld AkFEn L
Yz = h.,(Z) v Zp2 [(—1)"e —1] (175)
o Y AkFER L
P+t = Fesv (w&n(i) - wiln(j)) (176)
where wy,(x) = fj Yk FEn (2, y) I (y)dy. Since Jy+ (y) is piecewise (defined in (26))), this evaluates to
2wy,
SDZE*/,’”« = FSSZ/T [’CL,TL -+ ]CR,TL] (177)
where
wR(x*) v a(y—z n, a(y—=z :
Kin == Gy [ 42 [0 = (21"e @ sinn(y - 2))dy (178)
K =~ [ ) [en-) — (1)) sinfus, (y — 2))dy (179
’ VW (2*) Jpe -

and the functions ¢, ¥ r, Wn are defined in Lemma [0
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Proof. For @1 = hi(2)v(@y , () — Ty 4, (7)), recall wh 4 n(z) = ﬁ@mm,n@,@. Taking the
derivative with respect to x:
Wy o n(T) = waneo@e_‘m [—asin(w,(z — z)) + wy, cos(wn, (z — )]
= AkFEn L
Atz =z wy,,(z)= Py 202,
At x =3 @y, () = x5 2 e @@y, (1)
Thus
v 2 ot
Paln = h;s(g) )\KFE’n Zwi [1 — (—1)”6 o }

The derivation for ¢z ., follows similarly using wgy z »(z) = ﬁ@mmn(x, z).

From the definition @, (z) = fj Yk FEn (T, Y) Iz (y)dy, differentiating under the integral sign:

() = / Durvicr () Jo- (y)dy

Computing 0, vk rE »(2,y) from :
Oucrn(e,y) = 7¢O sin(un(y — ) [-asin(n(e — 2)) +wn cos(wn(e — 2)]

At the boundaries, sin(wy,(z — z)) =0, cos(w,(z — z)) = 1, and cos(w,(Z — 2)) = (—1)", so

2“}7”6@(1/—@

O Yk FEnN(2Z,Y) = sin(wn (y — 2))

zw’ﬂ n_ oa(y—=x .
OeVKFEN(T,Yy) = 7(—1) el )Sln<wn(y —z))

Therefore

2 g i
@) (@) = 5 (7) = = / Tor () [ 2072 = (=1)%e20)] sin(wa (y — 2))dy
x

The lifting function J,- (y) is piecewise, with J« (y) = — J&fﬁx)) P (y) fory < x* and Jp« (y) = — Vlé)[f]\(,g(;)) YY)

for y > x*. Splitting the integral at x* yields two terms of the form

Kn,j = / OV sin(w, (y — z)) dy

where 7; is an exponent from the homogeneous solution ¢} or ¢%. Applying the standard identity
e
/eay sin(by + ¢) dy = po (asin(by 4 ¢) — beos(by + ¢))

with a = a + 7, b = wy, and ¢ = —w,z, each K, ; evaluates to a closed-form expression in the model
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parameters. O

Lemma 22 (Sum of ¢p./AxkrEn). The eigenvalue-weighted sum of the wg., coefficients is

SOFn _ C
Z)\ _FS

KFEmn s

where Fsq is the steady-state frequency of price adjustment.

Proof. From the definition ¢r,, = v(@p,,(z) — @F,(T)) Where wr ., (7) = YrFEn (T, 77):

KFEn — AKFEn — AKFEn
n=1 n=1

Z )\@Fn _ (i a'L"YKFE,n(Ea Jf*) _ i 61;’YKFE,7L(377$*)>

Using the resolvent representation from Lemma > Yk FEA (T, 2%) /AKFEn = hss(x)/Fss. Differenti-

ating with respect to x:

i 8x'YKFE,n(xa'r*) — h{ss(x)
ot AKFEn Fiq

Therefore

Z L (B (@) ~ (@)

KFEn Fss

From the steady-state frequency formula with absorbing boundary conditions hgs(2) = hss(Z) = 0:
FSS = Vhfss(i) - Vh/bs(i') +<

Rearranging: v(hl (z) — h. (%)) = Fss — . Substituting:

H.2 Dynamic Solution Algorithm

The discrete time partial equilibrium (Definition [1)) is a series of forwards- and backwards-looking linear
equations. The series is infinite, so in practice it must be truncated at a finite number of eigenvalues n.
For low levels of trend inflation, a small 7 choice (e.g. 20) is sufficient to achieve high accuracy, but the
algorithm is fast and higher trend inflation levels require higher truncation indices, so I use 7 = 1000 in the
numerical examples.

For an arbitrary truncation n on the solution order, any standard solution method for linear macroe-
conomic models (Uhlig), [2001} |Sims, |2002|) can be used to solve for the equilibrium processes. Instead, this

appendix presents a more concrete algorithm that solves for each aggregate term sequentially. This can be

85



helpful for diagnosing problems and understanding the code.
The objective of the algorithm is to find the equilibrium sequence of price gaps Xt, boundaries 2}, &, 7+,

values ‘A/t*,ﬂt,ﬁt, and flows F}. It proceeds by:

1. Find ‘A/t* by Proposition [2| In lag operator notation equation becomes

Ve =i (Oncn () (-MC)) + Oyu(a")V;") +6,8L7'V;,

where 0,3 = e KFEne™P = ¢~AHIB.n - Aggregate over n and rearrange to obtain

" SHJB,n ev,n(x*) 7k
el R A
1— 6,301

NP SHIB;n Omcn(z*)
V=2, 1—6,8L"1 (=MC) + <

n=1

n=1

Write as a lag-operator polynomial and invert:

V= !
n SHJIB,n Ou,n(z*)

t n
1= 1-0,BL 1

)3 1—0,8L 1

n=1

[ n SHJIB,n OMmon(T*) (—MCy)
- t

2. Given ‘Z‘/*, find Kt and V; by Proposition In lag operator notation they become

n,t — SHIB,n (_GMC,n(Q)MCt + ®v7n(§>f/t*) + GnﬁL_lzn,t

v

Vn,t =SCHJB,n (_eMC,n(f)MCt + Gv,n(j)f/;f*) + enﬁL_lvn,t

thus the aggregate values are

i SHJB,n @v,n(m)> V*
t

- n. B " —SH B, Omcen(x)
Vtzvn,t<z 1_9715[/_1 )MCt+< 1_91'7,6[’_1
n=1 n=1 n=1
- nLa u —SHJIBn OMen(T) - St Ovn(T) | 7
Vt:ZVn,t:< l—enBL_l )Mct—i_(Zl—@nﬂL_l V;:
n=1 n=1 n=1

3. Given f/;*, find (&7,2,,2;) by Proposition In lag operator notation equations , , and

become
B0 = stamn (o (“MO) 4 Zpe V7 + 0,817,
2,1 =CSHIBn (Xg,n (—MCy) + Eln‘/t*) + 0,807 2, ,

i'mt =SCHJB,n (X:E,n (_MCt) + E:f,nf/t*) + anBL_lin,t
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thus the aggregate boundaries are

M:‘

§H]Bn~—'z n >
V*

Ak u Ak & SHJB,n Xz*,n
B=) i, = (;1_9”@—1> —MGCy) + (

n=1

o n " SHJB,n Xz,n n gHJBn:acn °
- _Mc, SHIBn Zan | 7
- (B ) t>+<21m )
~ ~ SHJB,n XZ,n n gHJB,nEi,n "k
B =) = (Z 1ML> (‘M0f>+<2 1mL>V
n=1 n=1

4. Given (#},2,,7¢), find Fy by Proposition [2| In lag operator notation equation becomes

Fn,t =SCSKFE,n (‘pF,nFt + (pa:*,n-%: + QDLnit - L)O:f,n*%t) + enLFn,t

Aggregate over n and rearrange to obtain

oo " §KFEn(PFn gKFEnSDI*,nA* gKFEn(pJ,nA gKFEn(Pa:nA
e (S ) g 3 SRy 3 oy 5 ShrE

n=1

Write as a lag-operator polynomial and invert:

~ 1 " SKFE,n P+ n s gKFEnQO;EnA gKFEn‘Pan
F, = 1 g _
t — 1_ Zn L §K1;E,(;L QZF,n [Z 1— enL + Z 1— 9 L =t Z 1— Q L Tt

n=1

5. Calculate the aggregate price gap X, by Proposition In lag operator notation equation becomes
Xn,t =CSKFEn (gF,nFt + fx*,ni': + gg,nit - ga’z,n‘%t> + gnLXn,t

thus the aggregate price gap is

_ S b & KFEann SKFE,n &z g SkFEnEon . " CKFEn s -
PO M *Z; N *Z BT D D v s A

n=1

I Summary of Mathematical Notation

*

Steady-state objects are denoted with subscript ss (e.g., hss(x), vss(x), Fss, Thy, Zos, Tss). For brevity, I
suppress ss in integration limits, domain specifications, eigenfunction arguments, and coefficient subscript

labels.
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Symbol

Description

p Discount rate
v Menu cost (cost to adjust price)
¢ Rate of free price adjustment opportunities
v Variance of idiosyncratic shocks
T Trend inflation rate
n Elasticity of substitution
o Risk aversion parameter
« Disutility of labor parameter
" Frictionless optimal markup
B Quadratic profit loss parameter
Table 3: Fixed parameter values.
Symbol Description
hss(x) Steady-state density of firms over price gaps
Vss () Steady-state firm value function
Fys Steady-state frequency of price adjustment
Th Steady-state reset point
Ty Steady-state lower inaction boundary
Tss Steady-state upper inaction boundary
Table 4: Primary steady-state objects.
Symbol Description
t Continuous time
1 Firm index
C(¢) Aggregate consumption at time ¢
L(t) Aggregate labor at time ¢
M(t) Money balances at time ¢
P(t) Aggregate price level at time ¢
W (t) Nominal wage at time ¢
R(t) Nominal interest rate at time ¢
D(t) Aggregate dividends at time ¢
Q(t) Price of nominal bond at time ¢
A1) Idiosyncratic preference shifter at time ¢
Yi(t) Output of firm ¢ at time ¢
Z;(t) Idiosyncratic productivity of firm ¢ at time ¢
L;(t) Labor input of firm ¢ at time ¢

Table 5: Primitive aggregate and firm-level variables.
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Symbol Description Formula

x Price gap (firm state variable) x;(t) = log P;(t) — log Z;(t) — log W (t) —
z(t,k), T(t,k) Lower/upper bounds of inaction region —

x*(t, k) Optimal reset value for price gap —

v(x,t, k) Value function for firm with gap x —

h(zx,t, K Density of firms over price gaps —

MC(t, k) Aggregate marginal cost deviation MC(t, k) = log W(t) — log W (t)

F(t, k) Frequency of price adjustment —

o(x) Initial distribution of price gaps —

() Terminal condition for value function —

Notes: The aggregate shock size k is included as an argument where relevant.

Table 6: Mean field game variables and definitions.

Symbol Description Formula

*(t) Derivative of optimal reset value w.r.t. shock &*(t) = 9,2*(¢,0)

Z(t), #(t) Derivatives of inaction region bounds 2(t) = 0.2(t,0), Z(t) = 0,.%(t,0)
O(x,t) Derivative of value function O(x, t) = Oxv(x,t,0)

iL(x, t) Derivative of price gap density iL(iE, t) = Oxh(z,t,0)

E(t) Derivative of frequency of price adjustment E(t) = 0,F(t,0)

X(t) Derivative of average price gap X(t) = 8, X(¢,0)

Notes: Hatted objects denote derivatives with respect to aggregate shock size, evaluated at k = 0.

Table 7: Perturbed mean field game variables.
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Symbol Description Formula / Deﬁnition

AKFE.n n-th KFE cigenvalue AkrpEn=C+ 5 + &5
AHJBn n-th HJB eigenvalue AHJBn = P+ AKFEn
vkrEn(z,y) KFE Green’s component ,Exe%(y*m) sin (%) sin (%)
vu B (2,y) HIB Green’s component ’yK;E,n(y,z) - -
wsn () KFE shock coefficient ff YeFEn (T, YR, (y)dy
Wr () KFE FPA coefficient Vka,n(x, x*)
W () KFE reset-point lifting coeff. / YEFER(T,Y)Jp (y) dy
WH g.n(2) KFE lower-bound lifting coeff. v Oy YK FE (T, T)
>\KFE,n
WH 7.0 () KFE upper-bound lifting coeff. ~—— Oy VkFEnN(2,T)
AKFEn
éon Price gap shock coefficient f f zh (Y)Y FE (2, y)dyds
EFm Price gap FPA coefficient fz TYKFE, n(x, 2*)dz
[ Price gap reset coefficient F f 2Oy Yk FEn (T, o*)dx
Exm Price gap lower boundary coeff. —vh/ (z )fI 20y Yk FE (T, 2)dT
&xn Price gap upper boundary coeff. —vh/ (Z) fj 20y Yk FrE (T, T)dz
Oncn() HJB MC coefficient —-2B ff VHT]B,H(:E, y)ydy
Oy n(7) HJB value coefficient —C f:;H(}B’n(l',y)dy +v0yvr BN (T, 2) — VO YHIB (T, T)
Xz* n Reset boundary MC coeff. —m@hcyn(:ﬁ*)
S Reset boundary value coeff. W@’ ()
Xa.n Lower boundary MC coeff. WGMC o(Z)
Ern Lower boundary value coefl. 621)55(05 0, ()
Xz.n Upper boundary MC coeff. m Ve (T)
Ein Upper boundary value coeff. 821}55(@ o, ()
©on FPA coefficients vw' (z)+ Ww.’n(g) —vw', (%) — Tw. o (T)

Notes: Steady-state objects use ss notation. For compactness, ss is suppressed in integration limits and eigenfunction
arguments.

Table 8: Intermediate constructed variables and coefficients.
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Symbol Description Notes

Pt Aggregate price gap (PED) P < Xexit,t + Xing it
Dy Optimal reset price gap (PED) Py < &,

P, Lower inaction boundary (PED) P, X Ty

Dt Upper inaction boundary (PED) Dt X Tiy

% Value at reset point (PED) V= V;t

Vv, Value at lower boundary (PED) V,= Kﬁyt

Vi Value at upper boundary (PED) Vi=Vis

F, Frequency of price adjustment (PED) F, «x Fcrit,t + F’intﬁ,t
MC; Aggregate marginal cost (discrete time) Exogenous or from GE
Ep* Composite price gap coefficient Exrn+E&an —Eam
Pp*n Composite FPA coefficient Ourm + Pen — Pin

Notes: Subscript n denotes the primary eigenfunction index. The critical-point components )A(Cm,t and FA'Cm,t are
algebraic, while interior components )A(imyn,t and Fmt,n,t are dynamic states.

Table 9: Primary Eigenfunction Discretization (PED) variables.
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