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1 Introduction

Do menu costs or other models of state-dependent pricing matter for macroeconomics? The answer depends

on the inflation environment. When trend inflation is close to zero, the Calvo (1983) model of random

adjustment opportunities gives an accurate approximation of the Phillips curve, if correctly parameterized

(Auclert et al., 2024). On the other hand, when trend inflation is high, state-dependent price setting

is fundamentally different than the Calvo model, and menu costs matter for macroeconomic dynamics.

However, menu cost models are not well understood in this case. Most well-known theoretical results are

derived under zero trend inflation, because it is precisely the edge case where the endogenous frequency of

price adjustment is irrelevant, and the model simplifies (Alvarez and Lippi, 2022). Therefore, high inflation

settings are both where menu costs matter most, and where economists understand them the least.

This paper addresses this gap with three main contributions. First, I derive an analytical solution to the

mean field game (MFG) for a menu cost model with trend inflation. Addressing the entire MFG allows me

to characterize how the value function, pricing decisions, inaction region, and distribution of prices evolve in

response to shocks. With low trend inflation, some of these features are not quantitatively important; Alvarez

and Lippi (2014) and Cavallo et al. (2024) show that a fixed inaction region is an accurate approximation.

But when there is non-trivial trend inflation, the firm’s value and decisions are more elastic, so the entire

MFG is needed. To derive the solution, I draw on insights from Alvarez et al. (2023), who give a linear

representation of the MFG in response to small shocks. Their assumption of zero trend inflation implies that

they can ignore the “reinjection” of price-resetting firms to the distribution of price gaps, which allows for

a simple solution to the Kolmogorov Forward Equation (KFE). However when there is trend inflation, this

reinjection matters. To handle it, I apply results from Adams (2025), which illustrates how the dynamic

distribution determines the endogenous reinjection process.

Second, I tackle another challenge facing menu cost models: they are relatively intractable. Their relevant

state variable is an infinite-dimensional distribution of price gaps, which means that they are usually solved

numerically and analyzed in partial equilibrium. To be useful for policy analysis, it would be valuable to

have a representation that fits neatly in existing general equilibrium models, without introducing too much

additional complexity.1 To this end, I derive a low-dimensional discrete time approximation to the MFG

solution: the primary eigenvalue decomposition (PED). Each component of the full solution is associated

with a particular eigenvalue in the KFE, but in practice only a few eigenvalues matter quantitatively. I show

that the PED, which uses just the most important eigenvalue, is a reasonably accurate approximation to the

full solution.

The PED is much more tractable, while retaining the realism and interesting features of the full solution.

In particular, the PED implies a dynamic Phillips curve that nests the traditional New Keynesian Phillips

1Indeed, this is why the Calvo model became popular, compared to alternative models of staggered price-setting such as
Taylor (1980).
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curve:

πt = Λmct + βEt[πt+1]︸ ︷︷ ︸
Calvo term

+ ϵ(θ−1Ft − βEt[Ft+1])︸ ︷︷ ︸
FPA correction

(1)

The “Calvo term” is standard, except that the slope Λ is not given by the usual Calvo calibration. Menu

costs however introduce an additional term, which depends on the Frequency of Price Adjustment (FPA).

When there is zero trend inflation, the correction coefficient ϵ is also zero, and equation (1) reduces to

the New Keynesian Phillips curve, validating the numerical findings from Auclert et al. (2024). However,

when trend inflation is nontrivial, the FPA dynamics matter for inflation dynamics. This is consistent with

existing knowledge: empirical and simulation results agree that the correlation between inflation and the

FPA is much stronger at high inflation rates.2

Why does the FPA show up in the Phillips curve? Because of the price-setting selection effect (Golosov

and Lucas Jr., 2007): economy-wide inflation depends on the distribution of firms that change prices. Adams

(2025) shows that the path of the FPA encodes all of the relevant features of the distribution of firms. Thus

FPA dynamics are sufficient to capture time-variation in the selection effect.

Third, because the PED is so tractable, I show that it can be easily embedded in general equilibrium

models and used for policy analysis. Since the PED equations’ coefficients are known analytically from

the model’s microfoundations, they can be easily calibrated using pricing statistics. Doing so does not

require solving the full non-linear model. This result is valuable even for practitioners studying low-inflation

economies: while it was already known that the Calvo Phillips curve was an accurate approximation of a

low-inflation menu cost economy, it was unclear how to calibrate it. After calibrating the PED, I embed it in

an otherwise textbook New Keynesian model, in order to analyze dynamics and monetary policy in general

equilibrium.

The PED reveals how menu costs amplify inflationary shocks relative to a Calvo structure. They do

so through two channels: increasing the slope of the Phillips curve, and increasing the direct effect of the

FPA on inflation. The Phillips curve effect is second-order when trend inflation is zero, consistent with

the wide acceptance of using zero trend to approximate relatively low inflation economies.3 However, the

effect of trend inflation on the FPA coefficient is first-order at zero. This is because while trend inflation

has second-order effects on firms’ decisions, it has first-order effects on aggregation. Therefore, in general

equilibrium, modest rates of trend inflation lead to substantially amplified dynamics relative to the driftless

calibration. For example, in the simple New Keynesian-style model, raising the annual trend inflation rate

from 0% to 5% increases the CIR of inflation to cost shocks by roughly one fourth.

The PED easily demonstrates how menu costs affect optimal monetary policy. Consistent with the

(Golosov and Lucas Jr., 2007) story, menu costs cause the economy to act as if price are more flexible

2See for example Gagnon (2009); Nakamura et al. (2018); Alvarez et al. (2019); Montag and Villar (2025); Gagliardone et
al. (2025).

3For example, Nakamura et al. (2018) and Alvarez et al. (2019) correctly argue that zero trend inflation accurately approxi-
mates the Phillips curve under the low inflation rates experienced by rich countries at the beginning of the 21st century, because
the effects on firms’ decision rules are second-order.
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than in a Calvo model. This yields a textbook implication: monetary policy optimally becomes more

aggresive, because real shocks have larger effects on inflation. But trend inflation changes the calculus. As

trend inflation increase, the Phillips curve slope increases, so optimal policy becomes even more aggressive.

Moreover, trend inflation amplifies the inflationary feedback through the FPA. Thus accounting for the

endogenous price adjustment increases the optimal monetary policy response even further.

Within the extensive menu cost literature, this paper is closely related to a few ongoing lines of inquiry.

Blanco et al. (2024) work to address the tractability of menu cost models by developing a theory in which

multi-product firms choose how many (but not which) of their prices to adjust. This assumption eliminates

the need to track the distribution of firms, allowing for exact aggregation with a simple non-linear Phillips

curve, in which the FPA appears. As an alternative to approximating or simplifying the model, Karadi et

al. (2025) study optimal monetary policy in the full nonlinear menu cost setting, focusing on the response

to large shocks. They also find that the endogenous FPA affects optimal policy; when inflation is high and

the Phillips curve is steep, it is optimal for monetary policy to take advantage of the heightened slope and

respond aggressively.

The remainder of the paper is organized as follows. Section 2 lays out the model. Section 3 derives the

analytical solution to the pricing block. Readers who prefer to avoid the partial differential equations should

skip to Section 4, which introduces the PED. Section 5 evaluates the approximation accuracy quantitatively.

If the reader is a practitioner who simply wants to see the approximation summarized and embedded in

a linear general equilibrium model, they should skip to Section 6, which studies the quantitative effects of

menu costs and trend inflation on dynamics and monetary policy. Section 7 concludes.

2 General Equilibrium Model

I consider a general equilibrium model most similar to Alvarez et al. (2024), where firms face menu costs and

idiosyncratic shocks, leading to state-dependent price adjustments. The economy consists of a representative

household, a central bank that conducts monetary policy, and firms facing price-setting frictions.

2.1 Households and Monetary Policy

The representative household maximizes lifetime utility:

∫ ∞

0

e−ρt
[
C(t)1−σC − 1

1− σC
− κ

σL
1 + σL

L(t)
1+σL
σL

]
dt, (2)

where C(t) is consumption and L(t) is labor supply. Consumption is a CES aggregate of differentiated goods:

C(t) =

(∫ 1

0

Ai(t)Ci(t)
η−1
η di

) η
η−1

(3)

4



where Ai(t) is a stochastic preference shifter, and η > 1 is the elasticity of substitution.

The household’s budget constraint is given by

M(0) +

∫ ∞

0

Q(t) [W (t)L(t) +D(t)− P (t)C(t)−R(t)M(t)] dt ≥ 0. (4)

where W (t) is the nominal wage, D(t) are firms’ profits paid as dividends, P (t) is the price level, R(t) is the

nominal interest rate, and Q(t) = e−
∫ t
0
R(s)ds is the price of a nominal bond.

The first order conditions for the household’s problem are

e−ρtC(t)−σC = λHHQ(t)P (t) e−ρtκL(t)
1

σL = λHHQ(t)W (t) (5)

where λHH is the household’s Lagrange multiplier for the budget constraint. These first order conditions

imply an intratemporal labor supply equation:

P (t)κL(t)
1

σL C(t)σC =W (t) (6)

and an intertemporal Euler equation

R(t)− π(t)− ρ = σC
Ċ(t)

C(t)
(7)

where π(t) = Ṗ (t)
P (t) denotes the inflation rate.

A central bank sets the nominal interest rate R(t) by a Taylor-type rule, as a function of the state of the

economy.

The household and monetary policy side of the model is standard, and will be discussed further in Section

6 when the general equilibrium economy is analyzed. The firm side of the model is discussed in detail next.

2.2 Firms

Firms produce differentiated goods using labor as the only input:

Yi(t) =
1

Zi(t)
Li(t) (8)

where Zi(t) represents stochastic idiosyncratic inverse productivity. Zi(t) represents a quality shifter, so it

is assumed to be perfectly correlated with the preference shifter, i.e. Zi(t) = Ai(t).
4 Zi(t) is i.i.d. across

firms, following a Brownian motion with variance 2ν.

Firms are monopolistic, so they set prices, but face menu costs. It is common to represent the firm’s

problem using a second order approximation around their frictionless optimal price. In this case, the profit

4As in Midrigan (2011), this assumption conveniently reduces the state space relative to Golosov and Lucas Jr. (2007).
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lost in every period is the quadratic Bgi(t)
2, where B = η(η−1)

2 and η is the price elasticity of demand. I

adopt the language of Alvarez et al. (2024):5 gi(t) denotes the log “markup gap”, which is given by

gi(t) ≡ log
Pi(t)

Zi(t)W (t)
− µ (9)

where µ is the frictionless optimal markup. From this markup gap, it is useful to construct the firm’s state

variable as a log “price gap” xi(t):

xi(t) ≡ logPi(t)− logZi(t)− log W̄ (t)− µ (10)

where W̄ (t) is the long-run wage trend. In the inaction region logPi(t) is constant, logZi(t) has no drift,

and log W̄ (t) grows at rate π̄, so xi(t) will have drift E[dxi(t)] = −π̄dt.

Thus the markup gap is related to the price gap by

gi(t) = xi(t)−MC(t) (11)

where MC(t) ≡ logW (t) − log W̄ (t) is the deviation from trend for the average log marginal cost across

firms, because logZi(t) is mean zero. To a first order approximation,6 the economy-wide price index is

logP (t) =
∫ 1

0
logPi(t)di, so the price level can be written from the average price gap X(t) ≡

∫ 1

0
log xi(t)di

as

logP (t) = X(t) + log W̄ (t) + µ (12)

2.3 The Price Setting Problem

The firm faces a “Calvo-plus” pricing problem (Nakamura and Steinsson, 2010), which nests the simple menu

cost case (Golosov and Lucas Jr., 2007).

If the firm wishes to change its price, it must pay real cost Ψ. However, it also receives Calvo-style free

adjustment opportunities at rate ζ. With this setup, the firm’s problem is characterized by its idiosyncratic

state variable – the price gap xi(t) – and the aggregate marginal cost MC(t). From here on, I will drop the

i subscripts.

As usual, menu costs imply an inaction region for firms. The firm chooses lower and upper bounds for

the price gap x(t) and x̄(t). Whenever its price gap x(t) reaches these bounds, or if the firm receives a

random free adjustment, then it resets its price gap to some optimal x∗(t). The firm’s problem is to choose

the profit-maximizing path for x∗(t), x(t), and x̄(t).

5Reader beware: many papers refer to gi(t) as the price gap, and treat it as the firm’s state variable.
6The true CES price index is P (t)1−η =

∫ 1
0 logPi(t)

1−ηdi.
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Inside the inaction region, the firm’s Hamilton-Jacobi-Bellman (HJB) equation is given by

ρv(x, t) = −B (x−MC(t))
2
+ ∂tv(x, t)− π̄∂xv(x, t) + ν∂2xv(x, t) + ζ (v(x∗(t), t)− v(x, t)) (13)

where π̄ is the trend inflation rate, and 2ν is the variance of the productivity process. The boundary

conditions for this problem are:

Value-matching v(x(t), t) = v(x∗(t), t) + Ψ = v(x̄(t), t)

Reset optimality ∂xv(x
∗(t), t) = 0

Smooth-pasting ∂xv(x(t), t) = 0 = ∂xv(x̄(t), t)

Terminal condition v(x, T ) = ϕterm.(x)

2.4 The Kolmogorov Forward Equation (KFE)

When marginal costs are constant, the distribution of price gaps h(x, t) evolves according to the Kolmogorov

forward equation:

∂th(x, t) = ν∂2xh(x, t) + π̄∂xh(x, t)− ζh(x, t) + F (t)δ(x− x∗(t)) (14)

where F (t) is the frequency of price adjustment (FPA), and δ(·) is the Dirac delta. The boundary conditions

for this PDE are:

Absorbing boundaries h(x(t), t) = 0 h(x̄(t), t) = 0

FPA determination F (t) = ν∂xh(x(t), t) + π̄h(x(t), t)− ν∂xh(x̄(t), t)− π̄h(x̄(t), t) + ζ

Initial condition h(x, 0) = ϕinit.(x)

Finally, there is an aggregation equation:

X(t) =

∫ x̄(t)

x(t)

xh(x, t)dx (15)

which determines the average price gap X(t).

3 The Mean Field Game

This section derives the equations governing the pricing mean field game in response to small shocks, and

solves them.
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3.1 Derivation of the Mean Field Game for Small Shocks

Consider the standard aggregate nominal cost shock: raising every firm’s marginal cost enters the mean

field game (MFG) through the profit function in the HJB. This is a distinction between the price gap and

markup gap representations; the latter is common and is how Alvarez et al. (2023) represent the model.

When the markup gap defined in equation (9) is used as a state variable, then a nominal cost shock shifts

the distribution of state variables directly. In that case, a permanent marginal cost shock will enter the KFE

instead of the HJB.7

Specifically, I consider a small unanticipated change to the path of aggregate nominal marginal costs

MC(t) modified by a small scalar κ. This shock affects the HJB through the profit function:

ρv(x, t) = B (x− κMC(t))
2
+ ∂tv(x, t)− π̄∂xv(x, t) + ν∂2xv(x, t) + ζ (v(x∗(t), t)− v(x, t))

The shock does not affect the distribution h(x, t) directly. Instead, the distribution evolves according to

the KFE, respecting the boundary conditions. This evolution depends on the critical points x(t), x̄(t), and

x∗(t), which are endogenous responses to the shock through the HJB.

Denote the solution to the MFG with steady state initial condition and the κ-scaled path of aggregate

shocks as the functions h(x, t, κ), v(x, t, κ), x(t, κ), x̄(t, κ), and x∗(t, κ).

To study small shocks analytically, we will solve for the derivative of the MFG solution with respect to

the shock. When the solution functions are written with hats, they denote derivatives around the no-shock

steady state:

ĥ(x, t) ≡ ∂κh(x, t, 0) v̂(x, t) ≡ ∂κv(x, t, 0) x̂(t) ≡ ∂κx(t, 0) ˆ̄x(t) ≡ ∂κx̄(t, 0) x̂∗(t) ≡ ∂κx
∗(t, 0)

Proposition 1 shows that the derivative functions are themselves solutions to a MFG with a convenient

form. Throughout, I denote steady-state values with a subscript ss: the steady-state distribution is hss(x),

the value function vss(x), the frequency of price adjustment Fss, and the critical points x∗ss, xss, x̄ss. For

brevity, in integration limits, domain specifications, eigenfunction arguments, and coefficient subscript labels,

I suppress the subscript and write x, x̄, etc.

Proposition 1. The derivative functions corresponding to the MFG with small aggregate shocks are them-

selves solutions to the following MFG:

ρv̂(x, t) = 2Bx (−MC(t)) + ∂tv̂(x, t)− π̄∂xv̂(x, t) + ν∂2xv̂(x, t) + ζ (v̂(x∗, t)− v̂(x, t)) (16)

v̂(x, t) = v̂(x̄, t) = v̂(x∗, t) (17)

∂xv̂(x, t) + ∂2xvss(x)x̂(t) = ∂xv̂(x̄, t) + ∂2xvss(x̄)ˆ̄x(t) = ∂xv̂(x
∗, t) + ∂2xvss(x

∗)x̂∗(t) = 0 (18)

7A disadvantage of using the markup gap as a state variable is that transitory marginal cost shocks affect both the HJB and
KFE, complicating the analysis. This is why I adopt the price gap as the state variable.
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v̂(x, T ) = 0 (19)

∂tĥ(x, t) = ν∂2xĥ(x, t) + π̄∂xĥ(x, t)− ζĥ(x, t) + F̂ (t)δ(x− x∗ss)− Fssδ
′(x− x∗ss)x̂

∗(t) (20)

ĥ(x, t) + h′ss(x)x̂(t) = ĥ(x̄, t) + h′ss(x̄)ˆ̄x(t) = 0 (21)

F̂ (t) = ν∂xĥ(x, t) + π̄ĥ(x, t)− ν∂xĥ(x̄, t)− π̄ĥ(x̄, t) (22)

ĥ(x, 0) = 0 x ∈ (x, x̄) (23)

X̂(t) =

∫ x̄(t)

x(t)

xĥ(x, t)dx (24)

Proof: Appendix A.1

3.2 Conditional Solutions to the MFG

This section derives the distribution ĥ(x, t) and value function v̂(x, t) as conditional solutions to the MFG.

Lemma 1 solves the HJB PDE conditional on the path of aggregate prices, while Lemma 2 solves the

KFE PDE conditional on firms’ pricing decisions. The complete solution will necessarily combine these two

conditional solutions; they are valuable intermediate steps that are straightforward to derive.

Lemma 1. The conditional solution to the HJB is the infinite sum

v̂(x, t) =

∞∑
n=1

v̂n(x, t)

where

v̂n(x, t) = ΘMC,n(x)

∫ T

t

e−λHJB,n(τ−t)(−MC(τ))dτ +Θv,n(x)

∫ T

t

e−λHJB,n(τ−t)v̂(x∗, τ)dτ

and

λHJB,n = ρ+ ζ +
π̄2

4ν
+

νn2π2

(x̄− x)2

γHJB,n(x, y) ≡
2

x̄− x
e

−π̄
2ν (y−x) sin

(
nπ(x− x)

x̄− x

)
sin

(
nπ(y − x)

x̄− x

)

ΘMC,n(x) ≡ −2B

∫ x̄

x

γHJB,n(x, y)ydy

Θv,n(x) ≡ −ζ
∫ x̄

x

γHJB,n(x, y)dy + ν∂yγHJB,n(x, x)− ν∂yγHJB,n(x, x̄)

Proof: Appendix A.2

The conditional solution to the KFE is more complicated. This is because Property 3 only gives a direct

solution for the distribution ĥ(x, t) on the interior of the inaction region. But the distribution depends on

the FPA, and the FPA depends on properties of the distribution at the boundaries. This is because the
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Green’s function always satisfies the zero boundary conditions.

To address this, I follow a standard “lifting function” strategy. Because the KFE is linear, it is possible

to separate into components that solve each non-homogeneous term in the PDE. First, an “interior” term

ĥint is the component of the distribution that responds to the flow of resetting firms and satisfies the

zero boundary conditions. Second, a “critical-point” term ĥcrit is the component that satisfies the non-

homogeneous boundary conditions and is unaffected by the FPA. This second term also includes the effects of

the reset point changing over time, which is useful to address without the Green’s function for computational

reasons.

To state the KFE solution, define the lifting functions (derived in Appendix D):

Hx(x) ≡
er2(x−x̄) − er1(x−x̄)

e−r2ℓ − e−r1ℓ
, Hx̄(x) ≡

er1(x−x) − er2(x−x)

er2ℓ − er1ℓ
(25)

Jx∗(x) ≡


− ψR(x

∗)

νWN (x∗)
ψ′
L(x) x < x∗

− ψL(x
∗)

νWN (x∗)
ψ′
R(x) x > x∗

(26)

where ℓ ≡ x̄− x is the length of the inaction region. The characteristic roots are

r1,2 = (−π̄ ±
√
π̄2 + 4νζ)/(2ν)

and the auxiliary functions are

ψL(x) = r2e
r1(x−x) − r1e

r2(x−x) ψR(x) = r2e
r1(x−x̄) − r1e

r2(x−x̄)

WN (x∗) = ψL(x
∗)ψ′

R(x
∗)− ψ′

L(x
∗)ψR(x

∗)

Lemma 2. The conditional solution to the KFE is

ĥ(x, t) = ĥcrit(x, t) + ĥint(x, t)

where the critical-point component is

ĥcrit(x, t) = −h′ss(x)x̂(t)Hx(x) + h′ss(x̄)ˆ̄x(t)Hx̄(x)− Fssx̂
∗(t)Jx∗(x) (27)

with Hx, Hx̄, and Jx∗ defined in (25)–(26), and the interior component is

ĥint(x, t) =

∞∑
n=1

ĥint,n(x, t)
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ĥint,n(x, t) = e−λKFE,nt
(
h′ss(x)x̂(0)ϖH,x,n(x)− h′ss(x̄)ˆ̄x(0)ϖH,x̄,n(x) + Fssx̂

∗(0)ϖJ,n(x)
)

+

∫ t

0

e−λKFE,n(t−τ)
(
ϖF,n(x)F̂ (τ) + Fssx̂

∗′(τ)ϖJ,n(x) + h′ss(x)x̂
′(τ)ϖH,x,n(x)− h′ss(x̄)ˆ̄x

′(τ)ϖH,x̄,n(x)
)
dτ

(28)

and

λKFE,n ≡ ζ +
π̄2

4ν
+
νn2π2

ℓ2
, ℓ ≡ x̄− x

γKFE,n(x, y) ≡
2

ℓ
e

π̄
2ν (y−x) sin

(
nπ(x− x)

ℓ

)
sin

(
nπ(y − x)

ℓ

)
(29)

ϖF,n(x) ≡ γKFE,n(x, x
∗) ϖJ,n(x) ≡

∫ x̄

x

γKFE,n(x, y)Jx∗(y) dy

ϖH,x,n(x) ≡
ν

λKFE,n
∂yγKFE,n(x, x) ϖH,x̄,n(x) ≡

ν

λKFE,n
∂yγKFE,n(x, x̄)

Proof: Appendix A.3

3.3 Aggregate Solution to the MFG

This section derives the integral equations describing the dynamics for aggregate variables solving the MFG.

The frequency of price adjustment F̂ (t) decomposes into critical-point and interior components:

F̂ (t) = F̂crit(t) + F̂int(t) (30)

The critical-point component depends on the levels of the boundary locations x̂∗(t), x̂(t), ˆ̄x(t). The interior

component depends on the time derivatives (or in discrete time, differences) of these boundaries, and further

decomposes into eigenfunctions: F̂int(t) =
∑∞
n=1 F̂int,n(t). The aggregate gap X̂(t) is expressed directly in

terms of levels without this decomposition.

The critical-point coefficients for F̂ (no n subscript) are defined from the lifting functions in Lemma 2:

φx∗ ≡ −Fssν(J ′
x∗(x)− J ′

x∗(x̄)) φx ≡ h′ss(x)ν(H
′
x(x)−H ′

x(x̄)) φx̄ ≡ h′ss(x̄)ν(H
′
x̄(x)−H ′

x̄(x̄))

The interior coefficients for F̂ depend on the eigenfunction index n, and are defined from the corresponding

ϖ·,n(x) function (defined in Lemma 2):

φx∗′,n ≡ Fssν
(
ϖ′
J,n(x)−ϖ′

J,n(x̄)
)

φx′,n ≡ h′ss(x)ν
(
ϖ′
H,x,n(x)−ϖ′

H,x,n(x̄)
)

φx̄′,n ≡ h′ss(x̄)ν
(
ϖ′
H,x̄,n(x)−ϖ′

H,x̄,n(x̄)
)

φF,n ≡ ν
(
ϖ′
F,n(x)−ϖ′

F,n(x̄)
)

The coefficients for X̂ in the levels representation depend on the eigenfunction index n and are derived from
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the Green’s function (see Lemma 3):

ξF,n ≡
∫ x̄

x

xγKFE,n(x, x
∗)dx

ξx∗,n ≡ Fss

∫ x̄

x

x∂yγKFE,n(x, x
∗)dx

ξx,n ≡ −νh′ss(x)
∫ x̄

x

x∂yγKFE,n(x, x)dx ξx̄,n ≡ −νh′ss(x̄)
∫ x̄

x

x∂yγKFE,n(x, x̄)dx

The remaining coefficients for the value function and boundary dynamics are:

χx∗,n ≡ − 1

∂2xvss(x
∗)
Θ′
MC,n(x

∗) Ξx∗,n ≡ − 1

∂2xvss(x
∗)
Θ′
v,n(x

∗)

χx,n ≡ − 1

∂2xvss(x)
Θ′
MC,n(x) Ξx,n ≡ − 1

∂2xvss(x)
Θ′
v,n(x)

χx̄,n ≡ − 1

∂2xvss(x̄)
Θ′
MC,n(x̄) Ξx̄,n ≡ − 1

∂2xvss(x̄)
Θ′
v,n(x̄)

Theorem 1. In a solution to the MFG, the aggregate variables are characterized by the following integral

equations.

The value function at any point x is given by backward integrals in the HJB eigenfunctions:

v̂(x, t) =

∞∑
n=1

v̂n(x, t) (31)

v̂n(x, t) = ΘMC,n(x)

∫ T

t

e−λHJB,n(τ−t)(−MC(τ))dτ +Θv,n(x)

∫ T

t

e−λHJB,n(τ−t)v̂(x∗, τ)dτ (32)

The optimal reset point x̂∗(t) follows from smooth pasting and decomposes into eigenfunction components:

x̂∗(t) =

∞∑
n=1

x̂∗n(t) x̂∗n(t) = χx∗,n

∫ T

t

e−λHJB,n(τ−t)(−MC(τ))dτ + Ξx∗,n

∫ T

t

e−λHJB,n(τ−t)v̂(x∗, τ)dτ

(33)

The other critical points x̂(t) =
∑
n x̂n(t) and ˆ̄x(t) =

∑
n
ˆ̄xn(t) have analogous forms with coefficients χx,n,

Ξx,n, χx̄,n, Ξx̄,n.

The aggregate price gap is given by a forward integral in levels of the boundary locations:

X̂(t) =

∞∑
n=1

X̂n(t) (34)

X̂n(t) =

∫ t

0

e−λKFE,n(t−τ)
(
ξF,nF̂ (τ) + ξx∗,nx̂

∗(τ) + ξx,nx̂(τ)− ξx̄,n ˆ̄x(τ)
)
dτ (35)
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The FPA decomposes into critical-point and interior components:

F̂crit(t) = φx∗ x̂∗(t) + φxx̂(t)− φx̄ ˆ̄x(t) (36)

F̂int,n(t) = e−λKFE,nt
(
φx∗′,nx̂

∗(0) + φx′,nx̂(0)− φx̄′,n ˆ̄x(0)
)

+

∫ t

0

e−λKFE,n(t−τ)
(
φF,nF̂ (τ) + φx∗′,nx̂

∗′(τ) + φx′,nx̂
′(τ)− φx̄′,n ˆ̄x

′(τ)
)
dτ (37)

Note that the FPA interior component depends on the time derivatives of the critical points (x̂∗′, x̂′, ˆ̄x′)

rather than their levels. The aggregate gap X̂ uses a direct levels representation.

Proof: Appendix A.4

The integral equations in Theorem 1 can be solved directly in “sequence space.” Alternatively, by the

Fundamental Theorem of Calculus, these integral equations imply differential equations for the n-indexed

components which can be solved recursively subject to initial and terminal conditions using a standard

method such as Sims (2002). Either way, the aggregate quantities of interest are recovered by summing:

x̂∗(t) =
∑∞
n=1 x̂

∗(t), X̂(t) =
∑∞
n=1 X̂n(t), and similarly for the other variables.

To build more intuition for how the aggregate price gap responds to shocks in the menu cost model, Fig-

ure 1 pairs the impulse response of the aggregate price gap Xt (right panel) with the underlying distribution

perturbation ĥ(x, t) (left panel). The distribution perturbation shows how a marginal cost shock propagates

through the cross-sectional distribution of price gaps. As firms with large price gaps adjust, mass flows from

the tails back toward the reset point, and the aggregate price gap decays.

Notes: The left panel plots the distribution perturbation ĥ(x, t) after a marginal cost shock. The right panel plots the

aggregate price gap response X̂(t) and the exogenous marginal cost path MC(t).

Figure 1: Analytical Perturbation to the Distribution and Aggregate Price Gap

13



Figure 1 demonstrates Theorem 1’s solution with a simple example. Firms face an unexpected increase

in nominal marginal costs that decays slowly over time. The left panel plots the perturbed distribution

ĥ(x, t), which represents the marginal change in the firms’ distribution from the shock. On impact, there is

a marginal increase in all critical points. This means that on the steady-state interval [xss, x̄ss] where ĥ(x, t)

is defined, the initial density changes precisely at the original critical points and is flat everywhere else. The

density ĥ(x, 0) is negative at x, because additional firms leave the interval and reset prices when the critical

point rises. Analogously, the density is positive at x̄, because firms that would have reset no longer do so.

The density is unusual at the critical point x∗: it is dipole-like, with a negative jump immediately followed by

a positive jump, matching the shape of the −δ′(x−x∗) term.8 Despite this non-continuous initial condition,

ĥ(x, t) evolves smoothly for t > 0, with mass accumulating in the positive region as firms choose higher

prices, raising the average price gap (right panel). Over time, the function converges back to zero, consistent

with the full distribution returning to the steady state.

3.4 Discrete Time Approximation

The true continuous time model is valuable for analytical characterization, but a discrete time model is often

more tractable for many applications. This section derives a discrete time approximation of the continuous

time solution by discretizing the integrals in Theorem 1. Throughout, ∆t denotes the time step size for the

approximation, which I set to ∆t = 1 in the final representation. The approximation treats time-varying

terms (marginal costs, boundary locations, aggregate values) as constant on each time step, and integrates

the exponential kernel e−λnτ exactly. Define the exact integration weight for eigenvalue λ at step size ∆t as

ς(λ) ≡
∫ ∆t

0

e−λτ dτ =
1− e−λ∆t

λ
(38)

When ∆t = 1, let ςHJB,n ≡ ς(λHJB,n) and ςKFE,n ≡ ς(λKFE,n).
9

In Proposition 2, V̂ ∗
t denotes the discrete time approximation of the reset value v̂(x∗, t). Values at

the other boundaries V̂ t and V̂ t are similarly defined. Written in terms of these discrete time values, the

derivative value-matching conditions (17) are

V̂ ∗
t = V̂ t = V̂ t (39)

As before, these values are sums of n-indexed components for each eigenvalue, as are the other variables:

V̂ ∗
t =

∞∑
n=1

V̂ ∗
n,t V̂ t =

∞∑
n=1

V̂ n,t V̂ t =

∞∑
n=1

V̂ n,t

8Appendix F.1 describes this initial condition in greater detail.
9The exact integration weight is approximately equivalent to the familiar Riemann weight ∆t, because for small λ, ς(λ) ≈ ∆t.

However, the exact integration weight is more accurate for larger λ, where exponential decay over the ∆t time interval is
nontrivial. This distinction matters for large n, so using exact integration weights is useful for both accuracy and numerical
stability.
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x̂∗t =

∞∑
n=1

x̂∗n,t ˆ̄xt =

∞∑
n=1

ˆ̄xn,t x̂t =

∞∑
n=1

x̂n,t

The aggregate gap is a sum of eigenfunction components, while the FPA decomposes into critical-point and

interior components:

X̂t =

∞∑
n=1

X̂n,t F̂t = F̂crit,t +

∞∑
n=1

F̂int,n,t

As in the continuous time case, z⃗t is a vector of the aggregate variables, z⃗crit,t contains the critical-point

components (for F̂ ), z⃗n,t contains the nth eigenfunction components, and zt is a vector stacking these in

ascending order.

Proposition 2 (Discrete time MFG dynamics). The discrete time approximation satisfies the system of

equations

V̂ ∗
n,t = ςHJB,n

(
ΘMC,n(x

∗) (−MCt+1) + Θv,n(x
∗) V̂ ∗

t+1

)
+ e−λHJB,n V̂ ∗

n,t+1 (40)

V̂ n,t = ςHJB,n

(
ΘMC,n(x) (−MCt+1) + Θv,n(x) V̂

∗
t+1

)
+ e−λHJB,n V̂ n,t+1 (41)

V̂ n,t = ςHJB,n

(
ΘMC,n(x̄) (−MCt+1) + Θv,n(x̄) V̂

∗
t+1

)
+ e−λHJB,n V̂ n,t+1 (42)

x̂∗n,t = ςHJB,n

(
χx∗,n (−MCt+1) + Ξx∗,n V̂

∗
t+1

)
+ e−λHJB,n x̂∗n,t+1 (43)

x̂n,t = ςHJB,n

(
χx,n (−MCt+1) + Ξx,n V̂

∗
t+1

)
+ e−λHJB,n x̂n,t+1 (44)

ˆ̄xn,t = ςHJB,n

(
χx̄,n (−MCt+1) + Ξx̄,n V̂

∗
t+1

)
+ e−λHJB,n ˆ̄xn,t+1 (45)

X̂n,t = ςKFE,n

(
ξF,nF̂t + ξx∗,nx̂

∗
t + ξx,nx̂t − ξx̄,n ˆ̄xt

)
+ e−λKFE,n X̂n,t−1 (46)

F̂crit,t = φx∗ x̂∗t + φxx̂t − φx̄ ˆ̄xt (47)

F̂int,n,t = ςKFE,n

(
φF,nF̂t + φx∗′,n∆x̂

∗
t + φx′,n∆x̂t − φx̄′,n∆ˆ̄xt

)
+ e−λKFE,n F̂int,n,t−1 (48)

where ∆x̂∗t ≡ x̂∗t − x̂∗t−1, ∆x̂t ≡ x̂t − x̂t−1, and ∆ˆ̄xt ≡ ˆ̄xt − ˆ̄xt−1 are discrete time approximations to x̂∗′(t),

x̂′(t), and ˆ̄x′(t).

Proof: Appendix A.5

Together, the dynamic equations in Propositions 2 define a partial equilibrium for firms and their pricing

decisions, which Definition 1 formalizes.

Definition 1. A discrete time partial equilibrium of the pricing side of the economy is a bounded infinite

sequence of price gaps X̂t, boundaries x̂
∗
t , x̂t, ˆ̄xt, values V̂

∗
t , V̂ t, V̂ t, and flows F̂t, that satisfy the dynamic

equations in Proposition 2, given a path for marginal costs MCt.

In practical terms, Proposition 2 shows that the pricing problem and associated dynamics are entirely

characterized by a system of linear dynamic equations in discrete time. While PDEs may be uncomfortable,

systems of dynamic linear equations are bread-and-butter for macroeconomists. The system is infinite
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dimensional, but with a large truncation on the eigenseries index n, and a sufficiently small time step ∆t,

the system can be solved to find the analytical solution with arbitrary precision.10 Moreover, this can be

done with standard macroeconomic model solvers using simple matrix algebra.

Still, an arbitrarily large system of equations is unwieldy. Next, I show that the system can be well

represented by only a few dimensions, and that this approximation is relatively accurate under a standard

calibration.

4 The Primary Eigenfunction Discretization

The analytical solution to the mean field game is infinite-dimensional. This section shows how the true

solution can be easily reduced to a low-dimensional discrete time approximation, the Primary Eigenfunction

Discretization (PED).

Each eigenvalue indexed by n is associated with an eigenfunction. These eigenfunctions form a basis

for functions on the interval [x, x̄]. Thus, the distribution ĥ(x, t) can be written as a linear combination

of these eigenfunctions. Each eigenfunction explains a share of the behavior of ĥ(x, t) over time. The

primary eigenfunction explains the most. This eigenfunction is not necessarily associated with the “dominant

eigenvalue” (Hansen and Scheinkman, 2009), i.e. the largest eigenvalue which describes dynamics at the

longest horizons.11

The PED is an approximation of the true solution. Before defining it, let us ask: What properties should

the PED have in order to be a good approximation?

4.1 Desireable Properties of an Approximate Solution

Consider any finite-dimensional approximation to the true solution. There are many ways to craft such a

thing, but in order to accruately approximate the true solution, it should inherit a number of salient features.

Imposing these properties will discipline the approximation.

First, a crucial property of the true solution is the long-run neutrality of monetary shocks. In the model,

a permanent increase in nominal marginal costs should increase nominal prices one-for-one in the long run.

I formalize this property as follows:

Definition 2. An approximation to the model solution satisfies long-run neutrality if, in response to a

10For further guidance, see the Computational Appendix H.
11Indeed, in the case of zero trend inflation, Alvarez and Lippi (2022) and Alvarez et al. (2023) show that the dominant

eigenvalue is irrelevant for the aggregate effects of cost shocks, because it describes symmetric (even) changes in the value
function, while a cost shock induces an anti-symmetric (odd) change.
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permanent marginal cost shock MC(t) = κ for t ≥ 0, the following limits hold:

lim
t→∞

X̂t = κ (49)

lim
t→∞

x̂∗t = κ (50)

lim
t→∞

x̂t = κ (51)

lim
t→∞

ˆ̄xt = κ (52)

Second, the model also has a number of implications for the dynamics of the FPA. These are more

mathematical. Let napprox denote a finite set of eigenvalue indices that are used to approximate the full

solution. In such an approximation, let the FPA be given by

F̂t = F̂crit,t +
∑

n∈napprox

F̂int,n,t

F̂int,n,t = ςKFE,n

(
φ̃F,nF̂t + φx∗′,n∆x̂

∗
t + φx′,n∆x̂t − φx̄′,n∆ˆ̄xt

)
+ e−λKFE,n F̂int,n,t−1 (53)

where

φ̃F,n = αφφF,n ∀n

Equation (53) only differs from equation (48) by replacing φF,n with φ̃F,n, which allows for control of the

feedback of the aggregate FPA F̂t to the finite components F̂int,n,t. With this notation, desirable full solution

properties of the FPA are:

Definition 3. An approximation to the model solution satisfies FPA-consistency if, in response to a

permanent marginal cost shock MC(t) = κ for t ≥ 0, the following hold:

lim
t→∞

F̂t = 0 (54)

F̂1 =

(
2

√
ν

π∆t
(h′ss(x) + h′ss(x̄)) +

π̄

2
(h′ss(x̄)− h′ss(x))

)
κ (55)

and if in general the aggregate feedback is

∑
n∈napprox

φ̃F,n =

∞∑
n=1

φF,n = 0 (56)

Equation (54) is simply long-run neutrality for the FPA. Equation (55) says that the discrete time

impact effect is approximately equal to the continuous time impact effect. Corollary 1 derives the given

expression from the integrated average FPA over the initial time period; it is an approximation of the

true effect, most accurate when the time interval and π̄ are small. Lastly, equation (56) imposes that

finite-dimensional approximation does not alter the aggregate feedback effect of the FPA, which could be
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potentially destabilizing, especially because φF,n is not a convergent series.

4.2 Defining the Primary Eigenfunction Discretization

Before finding the PED, I must first define what it means to approximate the solution with a single eigenfunc-

tion. The discrete-time equilibrium relations collected in Proposition 2 are not all satisfied when restricting

to one eigenfunction. But the full proposition is broken down into subcomponents associated with each n-

indexed eigenvalue. A single-eigenfunction approximation satisfies the relevant nth subcomponent equation

for the chosen eigenfunction.

In order to clean up notation, if a variable is written with a time subscript but without a hat, then it

denotes the PED. Additionally, to comport with convention, I use p’s to denote PED price gap variables.

Thus pt denotes the (log) deviation of the price level from trend. To be specific:

Definition 4. A discrete time single-eigenfunction approximation of the pricing side of the economy

is an infinite sequence of price gaps pt, boundaries p
∗
t , pt, p̄t, values V

∗
t , V t, V t, and flows Ft such that for

eigenfunction index n

pt ∝ X̂n,t

p∗t ∝ x̂∗n,t p
t
∝ x̂n,t p̄t ∝ ˆ̄xn,t

V ∗
t = V̂ ∗

n,t V t = V̂ n,t V t = V̂ n,t

Ft = F̂crit,t + F̂int,n,t

which also: satisfy the dynamic equations , (39), (41), and (42); satisfy the dynamic equations (43), (44),

(45), (46), (47), and (53) up to scale; and obey the long-run limits (49), (50), (51), (52); given a path for

nominal marginal costs MCt.

Definition 4 only imposes that Proposition 2’s dynamic equations determining nominal variables only

hold up to scale, which introduces enough degrees of freedom in order to ensure that long-run neutrality is

satisfied. This is because any discrete-time approximation of the continuous-time model will not precisely

satisfy long-run neutrality, even when all eigenvalues are accounted for. Scaling aside, Definition 4 has the

same number of equations as unknowns, but hides a shortcut: I do not impose that the dynamic equation (40)

associated with V ∗
t holds. This is because the approximation is over-determined. Of course it is: otherwise

it would be a complete solution. Specifically, the equations describing the values at the boundaries ((40),

(41), (42)) cannot generally all hold while also respecting the value-matching condition (39). Thus there is

flexibility in choosing which equations should hold in the approximation. This decision is innocuous when

there is zero trend inflation, in which case any three of these equations imply the fourth (Alvarez et al., 2023,

Lemma 4), but when π̄ ̸= 0, a selection must be made. I choose to enforce value-matching but not equation

(40) for two reasons. First, this choice is more tractable, as dropping the value-matching condition would
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introduce an additional forward-looking equation to the PED system in Theorem 2. Second, this choice is

consistent with the validation exercises conducted in Section 5.

To determine the primary eigenfunction and eigenvalue, a criterion is needed in order to determine how

well the choice of a particular eigenfunction approximates the true solution. To do so, let C denote a criterion

vector, which is some lag operator polynomial mapping some type of process into an equilibrium outcome in

the discrete time representation of the true model. For example, in the true model there is some lag-operator

polynomial IRFP (L) which represents the impulse response function (IRF) mapping an unanticipated real

marginal cost shock to the price level by pt = IRFP (L)mct. If the PED is judged by how accurately it

approximates this IRF, then the criterion vector would be C = IRFP (L).

To judge how well a particular eigenfunction approximates the true model, let Cn denote the appropriate

criterion vector implied by the eigenfunction approximation indexed by n. Lag operator polynomials can be

represented as infinite vectors, so define the approximation error by

[Approximation error] : ∥Cn −C∥

where ∥ · ∥ denotes some function that quantifies the error. Then, the PED is the discretization minimizing

this error:

Definition 5. The primary eigenfunction discretization (PED), indexed by primary index n̊, is the

discrete time single-eigenfunction approximation such that

n̊ = argmin
n∈Z

∥Cn −C∥

for some criterion vector C.

When trend inflation is reasonably small, the second eigenfunction (n = 2) is the primary eigenfunction.

I demonstrate this in Section 5, but it is consistent with known properties of the menu cost model: with zero

trend inflation, the deviation in the value function (Alvarez et al., 2023, Lemma 4) and price gap distribution

(Alvarez et al., 2023, Lemma 6) are both anti-symmetric, i.e. spanned by only the eigenfunctions with even

index n.12 Among these, the lowest order eigenfunction is by far the most important; for n = 4, 6, 8, ... the

contribution decays to zero rapidly.

Theorem 2. The primary eigenfunction discretization (PED) is described by three equations:

Optimal Price Setting p∗t = (1− θβ)MCt + θβp∗t+1

Price Level Law of Motion pt = ϵFt + (1− θ)p∗t + θpt−1

Frequency of Price Adjustment Determination Ft = ψp∗(p
∗
t − p∗t−1) + θFt−1

12Irritatingly, eigenfunctions that are odd around x∗ have even indices, so I prefer the less common “anti-symmetric” termi-
nology.
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where, given primary eigenvalue index n̊, the coefficients are defined:

β ≡ e−ρ θ ≡ e−λKFE,n̊

ϵ ≡ (1− θ)
ξF,̊n
ξp∗ ,̊n

ξp∗ ,̊n ≡ ξx∗ ,̊n + ξx,̊n − ξx̄,̊n

ψp∗ = 2

√
ν

π∆t
(h′ss(x) + h′ss(x̄)) +

π̄

2
(h′ss(x̄)− h′ss(x))

Proof: Appendix A.6

Theorem 2 gives a concise, linear representation of the model in terms of the FPA Ft and two price

variables pt and p∗t . However, like the Calvo model, this representation is not always the most practical.

This is because the reset price p∗t does not have a clear empirical counterpart, and also because both price

level variables tend to be non-stationary in general equilibrium models with real shocks. This is why New

Keynesian models are typically written in terms of inflation πt, rather than the price level. With Calvo

pricing, doing so gives a New Keynesian Phillips Curve.

This transformation is possible for the PED as well. Proposition 3 provides a “Menu Cost New Keynesian”

(MCNK) Phillips curve, which modifies the familiar Calvo equation with a correction term that accounts for

the endogenous FPA. The Proposition also provides a transformation of Theorem 2’s FPA Determination

equation that gives Ft in terms of inflation.

Proposition 3. Under the primary eigenfunction discretization, the New Keynesian Phillips Curve is mod-

ified by

MCNK Phillip Curve πt = Λmct + βπt+1 +
ϵ

θ
(Ft − θβFt+1)︸ ︷︷ ︸
FPA correction

MCNK FPA Determination Ft = ψπ (πt − θπt−1) + (θ + (1− θ)ψπϵ)Ft−1

where Λ ≡ (1−θ)(1−θβ)
θ is the New Keynesian slope parameter and

ψπ ≡ ψp∗

1− θ + ψp∗ϵ

Proof: Appendix A.7

Proposition 3 reveals that menu costs modify the traditional New Keynesian Phillips curve in two ways.

First, the slope Λ = (1−θ)(1−θβ)
θ is affected through θ: the endogenous pricing decision substantially lowers

θ, raising the “slope” of the Phillips curve, consistent with findings by Gertler and Leahy (2008), Alvarez

et al. (2017), and Auclert et al. (2024). Second, the curve is modified by a new dynamic term, the “FPA

correction”, which depends on the frequency of price adjustment. The Proposition also shows that menu
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costs introduce a new internal propagation mechanism: Ft is a persistent state variable in the MCNK FPA

Determination equation. This is noteworthy because the textbook New Keynesian model features no internal

propagation; the Calvo pricing structure alone delivers no persistence (Gaĺı, 2008).

Together, Proposition 3’s equations pin down paths for the inflation rate πt and FPA Ft in terms of the

real marginal cost mct. This system is easily embedded in general equilibrium models, replacing the usual

Phillips curve. I do so in Section 6. But first, some quantitative tests are needed to validate that the PED

is not just a reasonable dimensionality reduction, but an accurate approximation of the true solution.

5 Validating the Primary Eigenfunction Discretization

Is the PED a reasonable approximation of the true solution? This section answers: yes. I show that the

PED satisfies known theoretical properties in Section 5.1, and is quantitatively accurate in Section 5.2.

5.1 PED Validation: Theoretical Properties

This section gives two theoretical results validating the primary eigenvalue approach. The first shows that

it nests the usual Calvo linearization as a special case. The second shows that it is consistent with a known

result: without trend inflation, the menu cost model is closely approximated by the New Keynesian Phillips

Curve.

Property 1. With zero trend inflation (π̄ = 0), the textbook Calvo model is given by

Optimal Price Setting p∗t = (1− θCalvoβ)(mct + pt) + θCalvoβp
∗
t+1

Price Level Law of Motion pt = (1− θCalvo)p
∗
t + θCalvopt−1

where θCalvo ≡ e−ζ is the Calvo parameter consistent with the random reset rate ζ for small time steps.

5.1.1 The PED of the Calvo Model is the Textbook Calvo Model

This section shows that the primary eigenvalue approximation nests the trend-less Calvo model as a special

case. This is a desirable property of a useful approximation. When the inaction region becomes large, the

θ coefficient on the law of motion converges to e−ζ , which represents the share of firms receiving random

resets in the discrete time approximation. Proposition 4 gives the result:

Proposition 4. If trend inflation is zero (π̄ = 0), the PED of the Calvo model is equivalent to the textbook

Calvo model from Property 1.

Proof: Appendix A.8
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5.1.2 Same Old Phillips Curve?

Auclert et al. (2024) showed numerically that a menu cost model without trend inflation is, for a particular

calibration, very closely approximated by a Calvo model.13 They also found that this approximation breaks

down when trend inflation gets sufficiently large. Proposition 3 demonstrated that with trend inflation, the

PED Phillips curve does not hold, and is affected by the FPA. But in this section, I show that the PED is

consistent with the established numerical finding: with zero trend inflation, the PED implies the standard

New Keynesian Phillips Curve.

Proposition 5. With zero trend inflation (π̄ = 0), the PED implies the standard New Keynesian Phillips

Curve:

πt = Λmct + βπt+1 (57)

where Λ = (1−θ)(1−θβ)
θ .

Proof: Appendix A.9

5.2 PED Validation: Quantitative Properties

This section quantitatively evaluates the PED approximation accuracy. Under a standard calibration, it is

relatively accurate, and much more so than the Calvo model, although the accuracy of both decreases when

the trend inflation rate because especialyl large.

5.2.1 Calibration

This section describes a standard calibration based on the micro pricing statistics measured in Alvarez et

al. (2024) for the French economy. As a baseline, I set trend inflation to be π̄ = 0.02, matching the French

experience from the 1994-2019 sample. In various experiments, I will change π̄ while keeping unchanged the

other structural parameters, such as the menu cost.

The model has three key parameters that govern the distribution of price changes: the menu cost Ψ, the

diffusion variance ν, and the random reset rate ζ. These parameters are not directly observable, so they

must be inferred from the price adjustment statistics. I calibrate the parameters to match three moments:

the frequency of price adjustment Fss, the standard deviation of price changes, and the kurtosis of price

changes. In all cases I use the CPI-based statistics, and the kurtosis measure that adjusts for heterogeneity

(Alvarez et al., 2022). Table 1 (right panel) reports these three values for the French economy.

Table 1 presents three calibrations. The first is a pure Calvo model, which has no inaction region and

serves as a classic comparison. ζ is chosen to match the measured FPA, I interpret to approximate the

instantaneous frequency.14 The second is a Golosov-Lucas model, which sets ζ = 0 so that all adjustments

13Auclert et al show this result for the full impulse of marginal cost shocks. This builds on an earlier result by Alvarez et al.
(2017), who demonstrate the equivalence for the cumulative impulse response function.

14In reality, the frequency is measured at the monthly level as 10.5%, which is annualized to 1.26.
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Parameter Symbol Value

Trend inflation π̄ 0.02
Discount rate ρ 0.04
Elasticity of substitution η 6

(a) Fixed parameters

Parameters Targeted Moments

Model ζ ν ψ F std kurtosis

Calvo 1.2600 — — 1.2600 — —
Golosov-Lucas 0 0.003713 0.011842 1.2600 0.0759 —
Calvo-plus 1.1469 0.003580 0.165623 1.2600 0.0759 3.413

(b) Calibrated parameters and targeted moments

Table 1: Model calibration. Panel (a) reports fixed parameters that are held constant across calibrations.
Panel (b) reports three calibrations of the price adjustment parameters (ζ, ν,Ψ) to match moments from
French CPI microdata (Alvarez et al., 2024). The Calvo model matches only frequency. The Golosov-Lucas
model (ζ = 0) matches frequency and standard deviation. The Calvo-plus model matches all three moments.

occur at the boundaries; this model can match the frequency and standard deviation but not kurtosis. The

third is a “Calvo-plus” model that includes all three parameters and matches all three moments.

The price change statistics are nonlinear functions of the three parameters (Ψ, ν, ζ). Appendix G derives

expressions for the statistics, given in terms of features of the stationary distribution. Typically the stationary

distribution is solved numerically, but it is known in closed-form for the special case of zero trend inflation.15

Given ν and ζ, there is a one-to-one mapping between the menu cost Ψ and the inaction region width ℓ.

This allows for Proposition 6, which gives the pricing statistics analytically from (ℓ, ν, ζ) under zero trend

inflation.

Proposition 6 (Zero-drift pricing statistics). If trend inflation is zero (π̄ = 0), then the steady-state fre-

quency of price adjustment is

Fss =
ζ cosh(szdℓ/2)

cosh(szdℓ/2)− 1
.

The standard deviation of (log) price changes conditional on adjustment ∆p ≡ x∗ss − x is

Std(∆p) =

[
2ν

ζ
(1− sech(szdℓ/2))

]1/2
The kurtosis of conditional price changes is

Kurt(∆p) =
6

1− sech(szdℓ/2)
− 3ℓ2ζ

4ν cosh(szdℓ/2) (1− sech(szdℓ/2))
2

15My calibration procedure features an inner and outer loop algorithm. For a given guess of (Ψ, ν, ζ), the inner loop solves
the steady-state value function to obtain the inaction region boundaries (xss, x

∗
ss, x̄ss). Given the boundaries, the stationary

distribution hss(x) is computed from the KFE, and the price change moments follow from Appendix G. The outer loop adjusts
(Ψ, ν, ζ) until the computed moments match the targets.
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where szd ≡
√
ζ/ν and ℓ ≡ x̄ss − xss is the steady state inaction region width.

Proof. See Appendix G.

Proposition 6 is valuable for practitioners who may want to use the Calvo Phillips curve as an approx-

imation of the menu cost model under low inflation. Doing so requires a method to calibrate it because,

while the Calvo Phillips curve matches the functional form of the menu cost model, the Phillips curve slope

does not match (Auclert et al., 2024). The typical Calvo calibration (where 1− θ is equivalent to the FPA)

is an inaccurate approximation, so it is crucial to have a microfounded value for θ that captures the menu

cost model’s inflation dynamics.

5.2.2 Choosing the Primary Eigenvalue

The PED approximates the full eigenfunction expansion with a single term, indexed by n̊. Which eigenfunc-

tion should be chosen? The answer depends on which eigenfunction contributes most to the aggregate price

gap dynamics. In this section I show that choosing n̊ = 2 is appropriate for the PED.

Notes: Heatmaps show absolute contributions by eigenfunction index n (horizontal axis) and time (vertical axis) for x∗t ,
Ft, and Xt after a slow-decaying marginal cost shock with 0.9 annualized autocorrelation.

Figure 2: Eigenfunction Contributions to Aggregate Dynamics.
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The second eigenfunction (n = 2) is overwhelmingly important under the baseline calibration. Figure

2 displays the absolute contribution of each eigenfunction to the reset point x∗, the frequency of price

adjustment F , and the aggregate gap X, as a function of time and eigenfunction index. The heatmaps

reveal that for all variables, the second eigenfunction (n = 2) explains the most variation. For both x∗ and

X, the even-indexed eigenfunctions are most important, consistent with Alvarez et al. (2023). However the

FPA F̂t also depends noticeably on odd-indexed eigenfunctions, n = 1 in particular.

(a) Relative MSE (b) Correlation

Figure 3: PED Approximation Quality by Eigenfunction Index Choice

Notes: The left panel reports the relative mean squared error (MSE) of the aggregate gap IRF, and the right panel reports the
correlation between the PED and full-solution aggregate gap IRFs, across candidate PED indices. The baseline choice n̊ = 2
(purple triangles) is most accurate and most correlated with the true solution. The [2, 1] case (yellow diamonds) uses separate
indices for prices (n = 2) and flow dynamics (n = 1).

To ascertain how the PED index affects the approximation, I compare the accuracy of several index choices

in Figure 3. Specifically, the criterion is the accuracy of the aggregate gap IRF to a nominal marginal cost

shock with annual autocorrelation 0.9. The left panel reports the relative mean squared error between the

PED and full-solution IRFs. When these are the criterion and error function, the Definition 5 implies that

the n̊ = 2 approximation is the PED. Panel 3a shows that this choice (plotted in purple triangles) minimizes

the MSE across all trend inflation rates. The next most relevant eigenfunctions (n = 4, 6) are less accurate,

and higher indices are even worse. I also consider an approximation where the FPA is allowed to use a

different eigenfunction, and choose n = 1 the FPA equation alone, given its relevance in Figure 2. This

asymmetric case is plotted in yellow diamonds; it performs almost as well as the uniform n̊ = 2 PED, which

is why the curve is obscured, although it is slightly less accurate. Thus for parsimony, choosing a single

common n̊ = 2 is appropriate.

The approximation error begins to rise when trend inflation increases. For hyperinflationary economies,

the PED may not be an accurate approximation, and Theorem 1’s full solution should be consulted. However,

for the moderate trend inflation rates up to at least 20%, the PED is a good approximation. Panel 3b shows

the correlation coefficient between the PED and full-solution IRFs. Even when trend inflation is high and

errors start to increase, the PED remains highly correlated with the true solution. And again, the n̊ = 2
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PED is the most accurate across all trend inflation rates when judged by the correlation.

5.3 PED vs Calvo

How well does the PED approximate the full solution compared to Calvo? To concretely illustrate the

approximation quality, Figure 4 plots impulse response functions for the aggregate price gap (top row)

and the frequency of price adjustment (bottom row) to a persistent nominal marginal cost shock. In each

subfigure, the full continuous time solution is plotted in black, aggregated up to a monthly frequency. The

dashed blue line denotes the n̊ = 2 PED, while the dotted red line is the calibrated Calvo model.

(a) Aggregate Price Gap, π̄ = 2% (b) Aggregate Price Gap, π̄ = 10%

(c) Frequency of Price Adjustment, π̄ = 2% (d) Frequency of Price Adjustment, π̄ = 10%

Figure 4: IRFs to Marginal Cost Shock: PED vs Calvo.

Notes: Responses are to a 0.01 marginal cost shock with annual persistence 0.9. Columns compare π̄ = 2% and π̄ = 10%. The
top row reports aggregate price gap responses and the bottom row reports frequency responses. Black line is the full solution
(aggregated to monthly), blue dashed line is the monthly PED (n = 2), and red dotted line is Calvo.

The PED closely approximates the full solution in the baseline calibration (π̄ = .02). Figure 4a shows

that the PED price gap is nearly exactly the same, because the n = 2 eigenvalue explains most of the

behavior of the full solution’s aggregate price gap. The PED price gap is just slightly larger, because it

features a slightly higher FPA (Figure 4c). The impact FPA is larger than under the full solution, because
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it is normalized to exactly match the impact effect of a permanent marginal cost shock, but in this example

the shock is transitory.

In contrast, the Calvo model badly approximates the dynamics. On impact, the Calvo price level jumps

by too little, because it misses the contribution from the endogenous FPA. With menu costs, the FPA jumps

on impact because the density of firms is most perturbed near the boundaries; this dynamic is entirely

missing in the Calvo model. As a result, Figure 4a shows that the price increase is too small and too slow.

Moreover, the Calvo-plus model is the best possible case for the performance of the Calvo approximation,

because nearly all resets are random (see Table 1: ζ ∼ Fss). This means that the Calvo model will miss the

short run price response but match the long-run decay (θCalvo ∼ θn̊).

When trend inflation is higher, both approximations are worse (Figure 4b). The PED is still more accurate

than Calvo because it more closely matches the short run price response, while both perform similarly in the

long-run. But consistent with the Figure 3 results, PED accuracy declines with trend inflation. Figure 4d

reveals that this is due to a worse match with the FPA behavior. The PED still has qualitatively the correct

shape, but it overstates the FPA on impact, and does not sufficiently capture the negative FPA perturbation

in the medium-run. Above 10% trend inflation, it may be wise to simply use the full solution if high accuracy

is needed.

6 The Menu Cost New Keynesian Model

This section embeds the menu cost pricing block into an otherwise standard New Keynesian model; I refer

to the resulting system as a “Menu Cost New Keynesian” (MCNK) model. I show how the model dynamics

are affected by the inclusion of menu costs and the value of the trend inflation rate. Then I calculate the

implications for optimal monetary policy.

6.1 The Linear General Equilibrium Model

The textbook New Keynesian model is a three-equation system including the Calvo pricing block:

Property 2. With zero trend inflation (π̄ = 0), the textbook New Keynesian model is given by

NK Phillips Curve πt = Λ(αyt + zct ) + βEt[πt+1]

Euler Equation σyt = σEt[yt+1]− it + Et[πt+1] + zdt

Taylor Rule it = ϕππt + ϕyyt + zrt

The New Keynesian model adds an Euler equation (which follows from differentiating w.r.t. time the

household’s consumption first order condition in equation (5)) and a monetary policy rule for the nominal

interest rate it. Imposing market clearing gives that consumption must equal output yt, and the labor supply
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equation implies that real marginal costs satisfy mct = αyt + zct .
16 zct adds an exogenous cost shock which

controls how real marginal costs differ from those implied by labor supply alone.

Proposition 7 gives the MCNK model, which replaces the Phillips curve with Proposition 3’s pricing

block. This representation modifies the PED in two ways: forward-looking variables are only known in

expectation, and the real marginal cost mct is determined in general equilibrium.

Proposition 7. The linear Menu Cost New Keynesian Model is given by

MCNK Phillips Curve πt = Λ(αyt + zct ) + βEt[πt+1] +
ϵ

θ
(Ft − θβEt[Ft+1])

MCNK FPA Determination Ft = ψπ (πt − θπt−1) + (θ + (1− θ)ψπϵ)Ft−1

Euler Equation σyt = σEt[yt+1]− it + Et[πt+1] + zdt

Taylor Rule it = ϕππt + ϕyyt + zrt

In the analysis that follows, I will assume the cost, demand, and monetary policy shocks are independent

AR(1) processes:

zct = ρcz
c
t−1 + εct zdt = ρdz

d
t−1 + εdt zrt = ρrz

r
t−1 + εrt

In the exercises that follow, I adopt the Calvo-plus calibration reported in Table 1, which imply the PED

coefficients (θ,Λ, ϵ, ψπ) reported in Table 2. I set the remaining parameters to typical values.

Parameter Value Description

π̄ .02 Baseline trend inflation (annual)
β .997 Discount factor (monthly)
σ 1 Inverse IES
α 8 Marginal cost-output elasticity
θ .825 MCNK price-stickiness coefficient
Λ .0378 MCNK Phillips-curve slope
ϵ .000683 FPA correction coefficient
ψπ 13.894 Inflation feedback to FPA
ϕπ 1.5 Taylor-rule inflation coefficient
ϕy .125 Taylor-rule output coefficient
ρr .5 Monetary shock persistence
ρc .5 Cost shock persistence
ρd .5 Demand shock persistence
σr .01 Monetary shock innovation std. dev.
σcp .01 Effective cost-push innovation std. dev.
σd .01 Demand shock innovation std. dev.

Notes: Tabel reports the baseline calibration for the 4-equation general equilibrium model. PED coefficients (θ,Λ, ϵ, ψπ)
are determined from the pricing parameters in Table 1, and the expressions in Theorem 2 and Proposition 3.

Table 2: Baseline Calibration of the Menu Cost New Keynesian Model

16See Gaĺı (2008) for a clear textbook treatment. In this Property 2 representation, the natural rate of interest is fixed.
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6.2 MCNK vs Calvo: Impulse Responses

How does the MCNK model differ from the textbook Calvo formulation? The key distinction is the endoge-

nous frequency of price adjustment. In the Calvo model, the fraction of firms adjusting prices each period

is fixed at 1− θCalvo. In the MCNK model, this fraction responds to the aggregate state through the FPA

equation.

Figure 5 compares impulse responses to a monetary policy shock, a cost shock, and a demand shock.

Rows show inflation, output, the nominal interest rate, and the FPA. In all cases, the MCNK and Calvo

models produce qualitatively similar dynamics, but the magnitudes differ.

Notes: Both models use the Calvo-plus calibration reported in Table 2. Columns correspond to monetary policy, cost,
and demand shocks. Rows report inflation, output, nominal interest rate, and the frequency of price adjustment (FPA).
Blue solid is MCNK; red dashed is Calvo.

Figure 5: Impulse Responses: MCNK vs Calvo

The gaps between IRFs are due to two model differences. First, menu costs imply that the Phillips curve

slope Λ = (1−θ)(1−θβ)
θ is much steeper. This is the well-established steady-state selection effect: menu costs

imply that firms with prices further away from their optimum are more likely to change prices, so real shocks

have larger price effects, as if prices overall were more flexible than under Calvo pricing. Second, menu

costs imply that the endogenous FPA distorts the Phillips curve. This is the time-varying selection effect,
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because aggregate shocks shift the distribution, which is captured by the FPA path.17 Figure 5 shows that

the endogenous FPA response amplifies the inflationary effects of shocks: when a monetary policy, cost, or

demand shock increases inflation, the FPA moves in the same direction, acting as an “inflation accelerator”.18

6.3 Trend Inflation and the PED Coefficients

Trend inflation affects the MCNK model through several channels. The PED coefficients θ, ϵ, and ψπ vary

with π̄, while bp∗ = 1 − θ and ϕF = θ follow directly from the PED Theorem. Figure 6 plots θ, ϵ, ψπ, and

the implied Phillips curve slope Λ = (1−θ)(1−θβ)
θ .

Notes: The figure reports how PED coefficients vary with trend inflation π̄. In particular, it traces θ, ϵ, ψπ , and the

implied Phillips-curve slope Λ =
(1−θ)(1−θβ)

θ
.

Figure 6: PED Coefficients vs Trend Inflation

Three patterns emerge. First, θ increases with trend inflation: higher drift pushes mass toward the

boundaries more quickly, but also widens the inaction region asymmetrically, with an ambiguous net effect on

the decay rate. Second, the FPA impact coefficient ψp∗ varies with trend inflation, reflecting how boundary

conditions change as the inaction region becomes asymmetric. Third, the implied Phillips curve slope Λ

moves nonlinearly with θ, changing how marginal costs map into inflation.19

17Adams (2025) shows how the path of the flow of resets encodes all of the relevant information in the dynamic distribution.
18Blanco et al. (2024) coined this term; they study how price adjustment amplifies the inflation response in a nonlinear

Phillips curve.
19This positive association between the slope and inflation rate is observed in the data (Ball and Mazumder, 2011; Hazell et

al., 2022; Costain et al., 2022) and is a feature of other types of menu cost models beyond Golosov-Lucas or Calvo-plus (Blanco
et al., 2024; Morales-Jiménez and Stevens, 2024).
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These coefficient changes alter the general equilibrium dynamics. Figure 7 demonstrates how the dynam-

ics depend on the trend inflation rate by plotting cumulative impulse responses (CIRs) for output, inflation,

and the nominal interest rate it as a function of π̄. The left column shows responses to a monetary policy

shock; the right column shows responses to a cost shock.

Notes: The panels report MCNK cumulative impulse responses as π̄ varies. The left column corresponds to monetary
policy shocks, the middle column to cost shocks, and the right column to demand shocks. Reported outcomes are output,
inflation, and nominal interest responses.

Figure 7: Cumulative Impulse Responses vs Trend Inflation

The main lesson revealed by Figure 7 is that increasing trend inflation acts as if prices in the economy

become more flexible. In New Keynesian models, more flexible prices imply a steeper Phillips curve, which

is also the effect documented in Figure 6. The full dynamics captured by the CIR further include the

endogenous FPA behavior, but these effects are reinforcing. After a monetary contraction, inflation falls;

when π̄ is large, inflation falls by much more. After an expansionary demand shock, inflation raises; when π̄

is large, inflation rises by much more. Cost shocks are the exception, where trend inflation has a dampening

effect, because cost shocks mainly affect inflation directly rather than through the output gap.
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At what point is trend inflation non-trivial? It is common to justify a zero trend calibration as a reasonable

approximation of small inflation economies because firms’ decisions are second-order in the inflation rate;

this is clear in Figure 6, where the Phillips curve slope Λ is unchanging in trend inflation at π̄ = 0. However

the figure also shows that trend inflation has first-order effects on the FPA coefficient ϵ. As a result, trend

inflation affects the general equilibrium response even at low values. Figure 7 shows that the inflation CIR

is already substantially amplified at 5% trend inflation, and the effect quickly gets larger from there.

6.4 Optimal Monetary Policy

How should monetary policy respond to shocks in the MCNK model? To calculate optimal policy, I apply

the textbook method typically used to analyze the New Keynesian model, and illustrate how it is affected

by the inclusion of menu costs.20

As in Woodford (2003), I consider a central bank that commits to a Taylor rule of the form it =

ϕππt + ϕyyt + zrt , and chooses their optimal ϕπ, keeping ϕy fixed for this simple example. The central bank

minimize a quadratic loss function,

L = Var(π) + λyVar(y)

where λy ≥ 0 is the relative weight on output gap variability. The weight λy is typically calibrated to be

small, but Pfajfar and Winkler (2024) finds that equal weights more closely match public preferences, so I

choose λy = 1 in the baseline. Because the cost shock enters the Phillips curve as Λzct , the effective cost-shock

disturbance to inflation varies with the slope of the Phillips curve. To isolate the role of Λ in propagation

from its role in scaling the cost shock, I hold the product Λσc constant across models and inflation rates,

where σc is the standard deviation of the cost shock innovation.

Figure 8 plots the optimal policy coefficient as a function of trend inflation. Optimal policy in the menu

cost model (solid blue line) responds more aggresively to inflation than in the Calvo model (dashed red line,

only calculated for barπ = 0) because the slope of the Phillips curve is steeper. This is a standard result;

at zero-trend inflation, the menu cost PED is equivalent to a Calvo model with more flexible prices, which

requires more aggresive monetary policy because real shocks have larger inflationary effects.

The menu cost model’s prescription for aggresive monetary policy is strengthened as trend inflation

increases. This is for two reasons: first, higher trend inflation raises the Phillips curve slope (see Figure 6)

increasing the optimal ϕπ for the standard reason. The dashed black line isolates this channel: only the

slope Λ is reparameterized with π̄. The second reason is that the endogenous FPA amplifies inflationary

effects. Absent when trend inflation is zero, the FPA contribution becomes large; at 18.5% trend inflation,

the optimal ϕπ coefficient is one third larger in the full menu cost PED (solid blue line) as it is when only

accounting for the effect on Λ (dashed black line).

20A fuller treatment that does not depend on approximations and that considers questions of commitment versus discretion
would be desirable for serious quantitative analysis; see Karadi et al. (2025). I apply this textbook approach in order to
demonstrate the tractability of the PED and to quickly draw qualitative conclusions. The tractability will be particularly
valuable if additional realism is added to the general equilibrium model.
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Notes: The figure compares optimal policy coefficient (ϕ∗π) across trend inflation levels in MCNK and Calvo. Solid blue
line denotes MCNK, dashed black line uses the MCNK slope Λ but fixes ϵ = 0, and dashed red line denotes Calvo
(calculated only for π̄ = 0).

Figure 8: Optimal Taylor Rule Coefficients vs Trend Inflation

7 Conclusion

Menu costs matter the most when trend inflation is sizeable. And yet this is also when they are least

understood. This paper works to resolve this tension by deriving the analytical solution to the firm’s MFG

under trend inflation. Then I derived a tractable linear discrete time representation, the PED. I showed how

the PED can be calibrated and inserted into a standard DSGE framework for optimal policy analysis.

But these methods apply more broadly. The menu cost model is one example of (s, S) inaction behavior,

but it features prominently in many settings. And most cases, drift in the state variable (akin to trend infla-

tion) is standard. For example, drift matters for investment fixed cost problems when there is productivity

growth or depreciation (Caballero and Engel, 1999; Baley and Blanco, 2021), portfolio management when

illiquid assets have large excess returns (Alvarez et al., 2012), or consumer durables when there is income

growth (Attanasio, 2000).

In such cases, the MFG can be linearized and solved following the same steps as in Section 3. Then it

can be approximated with a PED as in Section 4. And finally it can be analyzed in tractable macroeconomic

models as in Section 6. Thus these methods will be useful for future macroeconomic research.

33



References

Adams, Jonathan J., “The Dynamic Distribution in the Fixed Cost Model: An Analytical Solution,”

Available at SSRN 4988128, 2025.

Alvarez, Fernando and Francesco Lippi, “Price Setting With Menu Cost for Multiproduct Firms,”

Econometrica, 2014, 82 (1), 89–135.

and , “The Analytic Theory of a Monetary Shock,” Econometrica, 2022, 90 (4), 1655–1680.
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A Proofs

This section collects proofs of the main results. Proofs of additional results in other appendices are included

where their results are stated.

A.1 Proof of Proposition 1

Proof. With the marginal cost function scaled by κ, the HJB is

ρv(x, t, κ) = B (x− κMC(t))
2
+ ∂tv(x, t, κ)− π̄∂xv(x, t, κ) + ν∂2xv(x, t, κ) + ζ (v(x∗(t), t, κ)− v(x, t, κ))

Taking derivatives with respect to κ at κ = 0, the value function v(x, t, κ) and HJB become

ρv̂(x, t) = 2Bx (−MC(t))+∂tv̂(x, t)−π̄∂xv̂(x, t)+ν∂2xv̂(x, t)+ζ (v̂(x∗(t), t) + ∂xv̂(x
∗, t)x̂∗(t)− v̂(x, t)) (58)

where terms without t arguments such as x∗ and w denote steady state values. The steady state value of

the marginal cost deviation MC(t) is zero. The reset condition at the steady state is ∂xv̂(x
∗, t) = 0, which

gives equation (16).

The value-matching conditions are

v̂(x, t) + ∂xvss(x)x̂(t) = v̂(x̄, t) + ∂xvss(x̄)ˆ̄x(t) = v̂(x∗(t), t) + ∂xvss(x
∗)x̂∗(t)

and the steady state smooth pasting and reset conditions imply that ∂xvss(x) = ∂xvss(x̄) = ∂xvss(x
∗) = 0.

Therefore, the value-matching conditions become

v̂(x, t) = v̂(x̄, t) = v̂(x∗, t)

The smooth-pasting and reset-optimality conditions are

∂xv̂(x, t) + ∂2xvss(x)x̂(t) = ∂xv̂(x̄, t) + ∂2xvss(x̄)ˆ̄x(t) = ∂xv̂(x
∗(t), t) + ∂2xvss(x

∗)x̂∗(t) = 0

and the terminal condition is

v̂(x, T ) = 0

The derivative of the KFE (14) becomes

∂tĥ(x, t) = ν∂2xĥ(x, t) + π̄∂xĥ(x, t)− ζĥ(x, t) + F̂ (t)δ(x− x∗ss)− Fssδ
′(x− x∗ss)x̂

∗(t) (59)

δ′(·) denotes the derivative of the Dirac delta function, which is not everywhere defined, but is well behaved

when integrated against a smooth function, as will be the case in the MFG solution.
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The absorbing boundary conditions become

ĥ(x, t) + h′ss(x)x̂(t) = ĥ(x̄, t) + h′ss(x̄)ˆ̄x(t) = 0

The FPA is given by

F̂ (t) = ν∂xĥ(x, t) + π̄ĥ(x, t)− ν∂xĥ(x̄, t)− π̄ĥ(x̄, t) + (νh′′ss(x) + π̄h′ss(x)) x̂(t)− (νh′′ss(x̄) + π̄h′ss(x̄)) ˆ̄x(t)

The latter terms simplify; the steady state KFE implies that away from the reset point:

[x ̸= x∗ss] : ζhss(x) = νh′′ss(x) + π̄h′ss(x)

therefore the boundary conditions hss(x) = 0 = hss(x̄) imply νh′′ss(x) + π̄h′ss(x) = 0 = νh′′ss(x̄) + π̄h′ss(x̄),

and the FPA equation simplifies to

F̂ (t) = ν∂xĥ(x, t) + π̄ĥ(x, t)− ν∂xĥ(x̄, t)− π̄ĥ(x̄, t)

Finally, the initial condition on the interior is given by the derivative of the initial steady state distribution,

which is fixed:

ĥ(x, 0) = 0 for x ∈ (x, x̄)

At the boundaries, the absorbing conditions imply ĥ(x, 0) = −h′ss(x)x̂(0) and ĥ(x̄, 0) = −h′ss(x̄)ˆ̄x(0), which

are possibly non-zero.

A.2 Proof of Lemma 1

Proof. By Lemma 5, the solution to the derivative HJB (16) is

v̂(x, t) = −2B

∫ T

t

∫ x̄

x

GHJB(x, y, τ − t)y(−MC(τ))dydτ − ζ

∫ T

t

∫ x̄

x

GHJB(x, y, τ − t)v̂(x∗, τ)dydτ

+ ν

∫ T

t

∂yGHJB(x, x, τ − t)v̂(x∗, τ)dτ − ν

∫ T

t

∂yGHJB(x, x̄, τ − t)v̂(x∗, τ)dτ (60)

The derivative value matching condition (17) gives the Dirichlet boundary conditions. GHJB(x, y, t) denotes

the appropriately parameterized Green’s function per equation (65), shifted to the interval [x, x̄]. Written

in the typical heat equation form, the HJB is

∂tv̂(x, t) = −ν∂2xv̂(x, t) + π̄∂xv̂(x, t) + (ρ+ ζ)v̂(x, t)− 2Bx(−MC(t))− ζv̂(x∗, t)
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so by Lemma 5 the Green’s function is

GHJB(x, y, t) =
2

x̄− x
e

(
−π̄
2ν (y−x)+

(
−(ρ+ζ)− π̄2

4ν

)
t
) ∞∑
n=1

sin

(
nπ(x− x)

x̄− x

)
sin

(
nπ(y − x)

x̄− x

)
e
− νn2π2

(x̄−x)2
t

(61)

which can be written concisely in terms of the eigenfunctions and eigenvalues:

GHJB(x, y, t) =

∞∑
n=1

γHJB,n(x, y)e
−λHJB,nt

With this notation, equation (60) can be written as

v̂(x, t) =

∞∑
n=1

v̂n(x, t)

where

v̂n(x, t) = −2B

∫ T

t

∫ x̄

x

γHJB,n(x, y)e
−λHJB,n(τ−t)y(−MC(τ))dydτ

+

∫ T

t

(
−ζ
∫ x̄

x

γHJB,n(x, y)dy + ν∂yγHJB,n(x, x)− ν∂yγHJB,n(x, x̄)

)
e−λHJB,n(τ−t)v̂(x∗, τ)dτ

which gives the desired expression once the definitions of ΘMC,n(x) and Θv,n(x) are used.

A.3 Proof of Lemma 2

Proof. The linearized KFE has time-varying boundary conditions ĥ(x, t) = −h′ss(x)x̂(t) and ĥ(x̄, t) =

−h′ss(x̄)ˆ̄x(t), and two forcing terms: F̂ (t)δ(x− x∗ss) and −Fssδ′(x− x∗ss)x̂
∗.

Decompose ĥ = ĥcrit + ĥint where ĥcrit captures the singular components (boundary conditions and δ′

forcing) and ĥint satisfies zero boundary conditions with smooth forcing.

Lemma 8 implies that −h′ss(x)x̂(t)Hx(x) + h′ss(x̄)ˆ̄x(t)Hx̄(x) solves the KFE with zero forcing and the

time-varying boundary conditions. Lemma 6 says that −Fssx̂∗(t)Jx∗(x) solves the KFE with zero boundary

conditions and forcing −Fssδ′(x − x∗ss)x̂
∗(t). Combining these gives the critical-point component ĥcrit in

(27).

Since ĥ(x, 0) = 0, the interior component must satisfy the initial condition

ĥint(x, 0) = −ĥcrit(x, 0) = h′ss(x)x̂(0)Hx(x)− h′ss(x̄)ˆ̄x(0)Hx̄(x) + Fssx̂
∗(0)Jx∗(x)

By Property 3 with Green’s function GKFE(x, y, t) =
∑
n γKFE,n(x, y)e

−λKFE,nt, the solution decomposes

into ĥint =
∑
n ĥint,n.
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A.4 Proof of Theorem 1

Proof. The value function at x is determined by the HJB solution (60), which gives equations (31)–(32)

directly.

I prove the result for x̂∗(t); the other boundaries follow the same logic. The optimal reset point is given

by the smooth-pasting condition 18:

x̂∗(t) = − 1

∂2xvss(x
∗)
∂xv̂(x

∗, t)

which is determined by future aggregate price gaps, marginal costs, and the value function at the boundaries

through the HJB solution (60):

x̂∗(t) = − 1

∂2xvss(x
∗)

∞∑
n=1

∂xv̂n(x
∗, t)

Decompose x̂∗(t) =
∑∞
n=1 x̂

∗
n(t) into a sum of terms associated with each eigenvalue:

x̂∗n(t) = − 1

∂2xvss(x
∗)
∂xv̂n(x

∗, t)

= − 1

∂2xvss(x
∗)

(
Θ′
MC,n(x

∗)

∫ T

t

e−λHJB,n(τ−t)(−MC(τ))dτ +Θ′
v,n(x

∗)

∫ T

t

e−λHJB,n(τ−t)v̂(x∗, τ)dτ

)

by Lemma 1. Using the coefficient definitions χx∗,n = − 1
∂2
xvss(x

∗)Θ
′
MC,n(x

∗) and Ξx∗,n = − 1
∂2
xvss(x

∗)Θ
′
v,n(x

∗)

gives equation (33).

Decompose the FPA F̂ (t) = F̂crit(t)+ F̂int(t) into critical-point and interior components, where F̂int(t) =∑∞
n=1 F̂int,n(t). The interior component F̂int,n(t) is computed from ĥint,n(x, t) using the flux formula. Since

ĥint,n(x, t) satisfies zero boundary conditions, Lemma 2 and the flux formula give equation (37). The critical-

point component F̂crit(t) is computed from the lifting functions in Lemma 2, giving equation (36).

The conditional path for the average gap X(t) is given by integrating the conditional solution to the

KFE:

X̂(t) =

∫ x̄

x

xĥ(x, t)dx =

∫ x̄

x

∞∑
n=1

xhn(x, t)dx =

∞∑
n=1

X̂n(t)

where X̂n(t) ≡
∫ x̄
x
xhn(x, t)dx. The average gap does not require the lifting function solution of Lemma 2;

Lemma 3 gives a simpler solution that follows directly from the Green’s function approach (Property 3):

ĥ(x, t) =
∑∞
n=1 ĥn(x, t) where

ĥn(x, t) =

∫ t

0

e−λKFE,n(t−τ)
(
ϖF,n(x)F̂ (τ) +ϖx∗,n(x)x̂

∗(τ) +ϖx,n(x)x̂(τ)−ϖx̄,n(x)ˆ̄x(τ)
)
dτ

ϖF,n(x) ≡ γKFE,n(x, x
∗)

ϖx∗,n(x) ≡ ∂yγKFE,n(x, x
∗)Fss ϖx,n(x) ≡ −ν∂yγKFE,n(x, x)h′ss(x) ϖx̄,n(x) ≡ −ν∂yγKFE,n(x, x̄)h′ss(x̄)
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therefore each X̂n(t) term is given by

X̂n(t) =

∫ x̄

x

∫ t

0

e−λKFE,n(t−τ)x
(
ϖF,n(x)F̂ (τ) +ϖx∗,n(x)x̂

∗(τ) +ϖx,n(x)x̂(τ)−ϖx̄,n(x)ˆ̄x(τ)
)
dτdx

Substitute using the coefficient definitions to yield the desired expression.

The proofs the following intermediate result, while solves the KFE for the perturbed distribution without

the lifting functions:

Lemma 3. The conditional solution to the KFE is the infinite sum

ĥ(x, t) =

∞∑
n=1

ĥn(x, t)

where

ĥn(x, t) =

∫ t

0

e−λKFE,n(t−τ)
(
ϖF,n(x)F̂ (τ) +ϖx∗,n(x)x̂

∗(τ) +ϖx,n(x)x̂(τ)−ϖx̄,n(x)ˆ̄x(τ)
)
dτ

and

λKFE,n ≡ ζ +
π̄2

4ν
+

νn2π2

(x̄− x)2

γKFE,n(x, y) ≡
2

x̄− x
e

π̄
2ν (y−x) sin

(
nπ(x− x)

x̄− x

)
sin

(
nπ(y − x)

x̄− x

)
ϖF,n(x) ≡ γKFE,n(x, x

∗)

ϖx∗,n(x) ≡ ∂yγKFE,n(x, x
∗)Fss ϖx,n(x) ≡ −ν∂yγKFE,n(x, x)h′ss(x) ϖx̄,n(x) ≡ −ν∂yγKFE,n(x, x̄)h′ss(x̄)

Proof. By Property 3, the conditional solution to the derivative KFE (20) is

ĥ(x, t) = −
∫ x̄

x

∫ t

0

GKFE(x, y, t− τ)F̂ (τ)δ(y−x∗)dτdy+

∫ x̄

x

∫ t

0

GKFE(x, y, t− τ)Fssδ
′(y−x∗)x̂∗(τ)dτdy

− ν

∫ t

0

∂yGKFE(x, x, t− τ)h′ss(x)x̂(τ)dτ + ν

∫ t

0

∂yGKFE(x, x̄, t− τ)h′ss(x̄)ˆ̄x(τ)dτ (62)

where GKFE(x, y, t) is the appropriately parameterized Green’s function per equation (65), albeit shifted to

the interval [x, x̄]:

GKFE(x, y, t) =
2

x̄− x
e

(
π̄
2ν (y−x)+

(
−ζ− π̄2

4ν

)
t
) ∞∑
n=1

sin

(
nπ(x− x)

x̄− x

)
sin

(
nπ(y − x)

x̄− x

)
e
− νn2π2

(x̄−x)2
t

(63)

The Green’s function (63) terms can be neatly separated by

GKFE(x, y, t) =

∞∑
n=1

γKFE,n(x, y)e
−λKFE,nt (64)
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With this notation, the solution (62) becomes

ĥ(x, t) =

∞∑
n=1

ĥn(x, t)

where

ĥn(x, t) =

∫ x̄

x

∫ t

0

γKFE,n(x, y)e
−λKFE,n(t−τ)F̂ (τ)δ(y−x∗)dτdy−

∫ x̄

x

∫ t

0

γKFE,n(x, y)e
−λKFE,n(t−τ)Fssδ

′(y−x∗)x̂∗(τ)dτdy

− ν

∫ t

0

∂yγKFE,n(x, x)e
−λKFE,n(t−τ)h′ss(x)x̂(τ)dτ + ν

∫ t

0

∂yγKFE,n(x, x̄)e
−λKFE,n(t−τ)h′ss(x̄)ˆ̄x(τ)dτ

Simplify the Dirac terms:

=

∫ t

0

γKFE,n(x, x
∗)e−λKFE,n(t−τ)F̂ (τ)dτ +

∫ t

0

∂yγKFE,n(x, x
∗)e−λKFE,n(t−τ)Fssx̂

∗(τ)dτ

− ν

∫ t

0

∂yγKFE,n(x, x)e
−λKFE,n(t−τ)h′ss(x)x̂(τ)dτ + ν

∫ t

0

∂yγKFE,n(x, x̄)e
−λKFE,n(t−τ)h′ss(x̄)ˆ̄x(τ)dτ

=

∫ t

0

e−λKFE,n(t−τ)

(
γKFE,n(x, x

∗)F̂ (τ) + ∂yγKFE,n(x, x
∗)Fssx̂

∗(τ)

− ν∂yγKFE,n(x, x)h
′
ss(x)x̂(τ) + ν∂yγKFE,n(x, x̄)h

′
ss(x̄)ˆ̄x(τ)

)
dτ

which gives the intended expression.

A.5 Proof of Proposition 2

Proof. The approach is to approximate the forcing in each integral of Theorem 1 as constant on intervals

of width ∆t, and integrate the exponential kernel exactly. For any eigenvalue λ, the exact integral of the

kernel over one time step is given by equation (38).

For the value function component at x∗ (and similarly for the boundary points) a discrete time approx-

imation of the integral in equation (32) treats the forcing as constant at its right-endpoint value on each

interval of width ∆t, and integrates the exponential kernel exactly:

v̂n(x
∗, t) ≈

∞∑
k=1

(ΘMC,n(x
∗)(−MC(t+ k∆t)) + Θv,n(x

∗) v̂(x∗, t+ k∆t))

∫ k∆t

(k−1)∆t

e−λHJB,nτ dτ

The integral evaluates to e−λHJB,n(k−1)∆t ς(λHJB,n). Because of the exponential function, this equation is

recursive forwards:

v̂n(x
∗, t) ≈ (ΘMC,n(x

∗)(−MC(t+∆t)) + Θv,n(x
∗)v̂(x∗, t+∆t)) ς(λHJB,n) + e−λHJB,n∆t v̂n(x

∗, t+∆t)
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For x̂∗n(t) (and similarly for the boundary points) a discrete time approximation of the forward-looking

integral in equation (33) follows the same procedure.21

x̂∗n(t) ≈
∞∑
k=1

(χx∗,n(−MC(t+ k∆t)) + Ξx∗,nv̂(x
∗, t+ k∆t)) e−λHJB,n(k−1)∆t ς(λHJB,n)

Because of the exponential function, this equation is recursive forwards:

x̂∗n(t) ≈ (χx∗,n(−MC(t+∆t)) + Ξx∗,nv̂(x
∗, t+∆t)) ς(λHJB,n) + e−λHJB,n∆t x̂∗n(t+∆t)

For the interior component F̂int,n(t), a discrete time approximation of the integral in equation (37) treats

the forcing as constant on each interval of width ∆t, and integrates the kernel exactly. Note that this involves

x̂∗′(τ), x̂′(τ), and ˆ̄x′(τ), which are approximated by the discrete differences ∆x̂∗(τ) ≡ x̂∗(τ) − x̂∗(τ −∆t),

∆x̂(τ) ≡ x̂(τ) − x̂(τ − ∆t), and similarly for x̄. Since x̂∗′(τ) ≈ ∆x̂∗(τ)/∆t, the derivative terms receive a

factor ς(λKFE,n)/∆t while the F̂ term receives ς(λKFE,n). The economy is in steady state for t < 0, so the

initial condition term is absorbed into the τ = 0 term:

F̂int,n(t) ≈
⌊t/∆t⌋∑
j=0

e−λKFE,n(t−j∆t−∆t) ς(λKFE,n)
(
φF,nF̂ (j∆t)+φx∗′,n

∆x̂∗(j∆t)

∆t
+φx′,n

∆x̂(j∆t)

∆t
−φx̄′,n

∆ˆ̄x(j∆t)

∆t

)

using ∆x̂∗(0) = x̂∗(0), ∆x̂(0) = x̂(0), and ∆ˆ̄x(0) = ˆ̄x(0) to combine the initial condition term with the τ = 0

flow term. Because of the exponential function, this equation is recursive backwards:22

F̂int,n(t) ≈ ς(λKFE,n)

(
φF,nF̂ (t) + φx∗′,n

∆x̂∗(t)

∆t
+ φx′,n

∆x̂(t)

∆t
− φx̄′,n

∆ˆ̄x(t)

∆t

)
+ e−λKFE,n∆tF̂int,n(t−∆t)

For the critical-point component F̂crit(t), equation (36) gives directly:

F̂crit(t) = φx∗ x̂∗(t) + φxx̂(t)− φx̄ ˆ̄x(t)

The total FPA is F̂ (t) = F̂crit(t) +
∑∞
n=1 F̂int,n(t).

For the aggregate gap X̂n(t), a discrete time approximation of the integral in equation (35) treats the

forcing as constant on each time interval and integrates the kernel exactly:

X̂n(t) ≈
⌊t/∆t⌋∑
j=0

e−λKFE,n(t−j∆t−∆t) ς(λKFE,n)
(
ξF,nF̂ (j∆t) + ξx∗,nx̂

∗(j∆t) + ξx,nx̂(j∆t)− ξx̄,n ˆ̄x(j∆t)
)

21While the backward-looking KFE is approximated with a left-endpoint evaluation (including the current period flow), the
forward-looking HJB is approximated with a right-endpoint evaluation (starting from the next period). This distinction ensures
stability in the discrete time system.

22The choice to use F̂ (t) here versus F̂ (t − ∆t) approximates the same continuous function, but is useful for both stability
and so that the discrete time approximation of the vector representation follows naturally from the continuous time case.
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Because of the exponential function, this equation is recursive backwards:

X̂n(t) ≈ ς(λKFE,n)
(
ξF,nF̂ (t) + ξx∗,nx̂

∗(t) + ξx,nx̂(t)− ξx̄,n ˆ̄x(t)
)
+ e−λKFE,n∆tX̂n(t−∆t)

The total average gap is X̂(t) =
∑∞
n=1 X̂n(t).

Setting the step size to ∆t = 1 and adopting the discrete time notation gives the desired equations.

A.6 Proof of Theorem 2

Proof. The Optimal Price Setting equation follows from equation (43), with p∗t = αp∗ x̂
∗
n̊,t for some scalar

αp∗ :

p∗t = αp∗ςHJB,̊n (χx∗ ,̊n (−MCt) + Ξx∗ ,̊nV
∗
t ) + e−λHJB,n̊p∗t+1

Following the value matching conditions (39), it is convenient to characterize V t instead of V ∗
t directly. The

primary eigenfunction approximation is

V̂ n̊,t ≡ V t = ςHJB,̊n

(
ΘMC,̊n(x) (−MCt) + Θv,̊n(x)V̂

∗
t

)
+ e−λHJB,n̊V t+1

by Proposition 2. Observe that ΘMC,n(x) = 0 and Θv,n(x) = 0, because γHJB,n(x, y) = 0 for all n and y.

Therefore V t = V ∗
t = 0 and the price setting equation reduces to

p∗t = αp∗ςHJB,̊n χx∗ ,̊n (−MCt) + e−λHJB,n̊p∗t+1

The effect on p∗t of a permanent marginal cost change κ is

dp∗t
dκ

=
αp∗ςHJB,̊n χx∗ ,̊n

1− e−λHJB,n̊
κ

thus long-run neutrality requires αp∗ςHJB,̊n χx∗ ,̊n = 1 − e−λHJB,n̊ . Since ςHJB,̊n = (1 − e−λHJB,n̊)/λHJB,̊n,

the 1 − e−λHJB,n̊ factors cancel, giving αp∗ = λHJB,̊n/χx∗ ,̊n. Use e−λHJB,n̊ = e−ρ−λKFE,n̊ = θβ and note

that αp∗ςHJB,̊n χx∗ ,̊n = 1− θβ to write

p∗t = (1− βθ)MCt + θβp∗t+1

Similarly, the other results from Proposition 2 give

p
t
= αpςHJB,̊n χx,̊n (−MCt) + e−λHJB,n̊p

t+1
p̄t = αp̄ςHJB,̊n χx̄,̊n (−MCt) + e−λHJB,n̊ p̄t+1
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and long-run neutrality requires

αpςHJB,̊n χx,̊n = (1− e−λHJB,n̊) αp̄ςHJB,̊n χx̄,̊n = (1− e−λHJB,n̊)

which then imply p∗t = p
t
= p̄t.

The Flow Determination equation follows from the critical-point component equation (47) and the mod-

ified interior component equation (53). In the single-eigenfunction approximation with p∗t = p
t
= p̄t, the

critical-point component is

F̂crit,t = φp∗ p
∗
t

where φp∗ ≡ φx∗ +φx−φx̄ combines the critical-point coefficients (which do not depend on n). The interior

component satisfies

F̂int,̊n,t = ςKFE,̊n

(
φ̃F,̊nF̂t + φ′

p∗ ,̊n∆p
∗
t

)
+ e−λKFE,n̊ F̂int,̊n,t−1

where φ′
p∗,n ≡ φx∗′,n + φx′,n − φx̄′,n involves the primed interior coefficients and ∆p∗t = p∗t − p∗t−1.

The total FPA perturbation is F̂t = F̂crit,t +
∑∞
n=1 F̂int,n,t. In the PED, the FPA is up to scale in each

component, i.e.

Ft = αF,critF̂crit,t + αF,intF̂int,̊n,t

for some coefficients αF,crit and αF,int Substituting the expressions:

Ft = αF,critφp∗p
∗
t + αF,intςKFE,̊n

(
φ̃F,̊nF̂t + φ′

p∗ ,̊n∆p
∗
t

)
+ e−λKFE,n̊ F̂int,̊n,t−1

FPA-consistency (Definition 3) requires that after a permanent κ marginal cost shock, Ft → 0 in the long-

run. p∗t permanently increases by κ to satisfy long-run neutrality, which implies αF,crit = 0. FPA-consistency

also requires that φ̃F,n coefficients sum to zero. Therefore the FPA equation reduces to

Ft = αF,intςKFE,̊n φ
′
p∗ ,̊n∆p

∗
t + e−λKFE,n̊Ft−1

FPA-consistency also requires matching the impact effect F̂1κ to a ∆p∗1 = κ shock, which requires

F1κ = αF,intςKFE,̊n φ
′
p∗ ,̊nκ

=⇒ αF,int =
F̂1

ςKFE,̊n φ′
p∗ ,̊n

given these values for the scaling coefficients, use the F̂1 value from Definition 3 (which implies ψp∗ = F̂1)
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and substitute back in with the ψp∗ and θ definitions to yield the Flow Determination equation:

Ft = ψp∗
(
p∗t − p∗t−1

)
+ θFt−1

The Price Level Law of Motion follows from the discretization (46), which holds up to scale with unknown

coefficient αp. In the single-eigenfunction approximation with p∗t = p
t
= p̄t, this reduces to

pt = αp ςKFE,̊n (ξF,̊nFt + ξp∗ ,̊np
∗
t ) + θpt−1

where ξp∗,n ≡ ξx∗,n + ξx,n − ξx̄,n.

Long-run neutrality requires that a permanent κ increase in MCt leads to a κ increase in the limit p∞.

In the long run,
dp∗∞
dκ = κ and dF∞

dκ = 0 by construction. These limits imply

dp∞
dκ

= αp ςKFE,̊n ξp∗ ,̊nκ+ θ
dp∞
dκ

Impose neutrality (dp∞dκ = κ):

αp =
1− θ

ςKFE,̊n ξp∗ ,̊n

thus the law of motion becomes

pt = (1− θ)
ξF,̊n
ξp∗ ,̊n

Ft + (1− θ)p∗t + θpt−1

A.7 Proof of Proposition 3

Proof. Begin by shifting forward the Price Level Law of Motion, multiply by θβ, and subtract from the

original equation:

pt − θβpt+1 = ϵ(Ft − θβFt+1) + (1− θ)(p∗t − βθp∗t+1) + θ(pt−1 − θβpt)

substitute from the Optimal Price Setting equation and rearrange:

pt − θβXt+1 = ϵ(Ft − θβFt+1) + (1− θ)(1− θβ)(mct + pt) + θ(pt−1 − θβpt)

−θpt−1 + (1−m+ θ2β)pt − θβXt+1 = ϵ(Ft − θβFt+1) + (1− θ)(1− θβ)mct + ((1− θ)(1− θβ)−m)pt
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for some m. Specifically, it will be helpful to chose an m such that the left hand side can be written in terms

of inflations, i.e. Πt = pt − pt−1.

−θpt−1 + (1−m+ θ2β)pt − θβXt+1 = ϵ(Ft − θβFt+1) + (1− θ)(1− θβ)mct + ((1− θ)(1− θβ)−m)pt

θΠt + (1−m+ θ2β − θ)pt − θβXt+1 = ϵ(Ft − θβFt+1) + (1− θ)(1− θβ)mct + ((1− θ)(1− θβ)−m)pt

θΠt + (1−m+ θ2β − θ − θβ)pt − θβΠt+1 = ϵ(Ft − θβFt+1) + (1− θ)(1− θβ)mct + ((1− θ)(1− θβ)−m)pt

which simplifies nicely if m = (1− θ)(1− θβ). Using this value, divide by θ:

Πt − βΠt+1 =
ϵ

θ
(Ft − θβFt+1) +

(1− θ)(1− θβ)

θ
mct +

(
(1− θ)(1− θβ)

θ
− (1− θ)(1− θβ)

θ

)
pt

Πt − βΠt+1 =
ϵ

θ
(Ft − θβFt+1) +

(1− θ)(1− θβ)

θ
mct

Substitute in the with Λ = (1−θ)(1−θβ)
θ and rearrange:

Πt = Λmct + βΠt+1 +
ϵ

θ
(Ft − θβFt+1)

Differencing the Price Level Law of Motion gives

πt = ϵ(Ft − Ft−1) + (1− θ)(p∗t − p∗t−1) + θπt−1

rearrange to isolate p∗t − p∗t−1 and substitute into the FPA Determination equation

Ft =
ψp∗

1− θ
(πt − θπt−1 − ϵ(Ft − Ft−1)) + θFt−1

Collect terms: (
1 +

ψp∗ϵ

1− θ

)
Ft =

ψp∗

1− θ
(πt − θπt−1) +

(
θ +

ψp∗ϵ

1− θ

)
Ft−1

Ft =
ψp∗

1− θ + ψp∗ϵ
(πt − θπt−1) +

θ(1− θ) + ψp∗ϵ

1− θ + ψp∗ϵ
Ft−1

Substitute with ψπ to complete the proof.

A.8 Proof of Proposition 4

Proof. The PED Optimal Price Setting equation already matches the Calvo model, so it remains to show that

the PED Price Level Law of Motion reduces to the Calvo law of motion with the appropriate θ parameter.

The Calvo model is obtained as the limiting case of the menu cost model when the inaction region

becomes large, ℓ ≡ x̄− x→ ∞, keeping the random reset rate ζ > 0 fixed.
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When π̄ = 0, the stationary pricing problem is symmetric, and the aggregate response to a (small) cost

shock is anti-symmetric around the midpoint. (Alvarez et al., 2023) show that in this case only even-indexed

eigenfunctions are relevant, so the PED eigenvalue index n̊ must also be even.

Lemma 4 implies that ϵ = 0 with zero trend inflation and n̊ even. Therefore the PED Price Level Law

of Motion (Theorem 2) reduces to

pt = (1− θ)p∗t + θpt−1

which is the Calvo law of motion.

Finally, θ in the PED is defined as

θ = e−λKFE,n̊ = e−ζ−
n2π2σ2

2ℓ2

from the definition of λKFE,n in Lemma 2. Taking the limit as ℓ→ ∞ gives

lim
ℓ→∞

θ = e−ζ = θCalvo

This proof relies on an intermediate result:

Lemma 4. If trend inflation is zero (π̄ = 0), then ξF,n = 0 for any even eigenvalue index n.

Proof. From Lemma 2,

ξF,n ≡
∫ x̄

x

x γKFE,n(x, x
∗) dx.

Using the explicit kernel definition (29), when π̄ = 0 we have

γKFE,n(x, y) =
2

ℓ
sin

(
nπ(x− x)

ℓ

)
sin

(
nπ(y − x)

ℓ

)
, ℓ ≡ x̄− x.

Evaluating at y = x∗ gives

γKFE,n(x, x
∗) =

2

ℓ
sin

(
nπ(x− x)

ℓ

)
sin

(
nπ(x∗ − x)

ℓ

)
.

Zero trend inflation implies that the inaction region is symmetric, so x∗ = (x+ x̄)/2 and (x∗ − x)/ℓ = 1/2,

thus

sin

(
nπ(x∗ − x)

ℓ

)
= sin

(nπ
2

)
= 0 for even n.

Therefore γKFE,n(x, x
∗) ≡ 0 for even n, which implies ξF,n = 0 and hence ϵ = 0.
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A.9 Proof of Proposition 5

Proof. Trend inflation is zero, so the PED eigenvalue index n̊ must be even (Alvarez et al., 2023). With an

even eigenvalue index n, Lemma 4 implies ϵ = 0.

Per Proposition 3, the Phillips curve is

πt = Λmct + βπt+1 +
ϵ

θ
(Ft − θβFt+1)

With ϵ = 0, the ϵ
θ (Ft − θβFt+1) correction term vanishes, yielding the standard NKPC.

B Mathematical Appendix

Property 3. For a PDE of the form:

∂tf(x, t) = a∂2xf(x, t) + b∂xf(x, t) + cf(x, t) + Φ(x, t)

on the interval x ∈ [0, ℓ], t ≥ 0, with Dirchlet boundary conditions f(0, t) = g0(t) and f(ℓ, t) = gℓ(t), and

initial condition f(x, 0) = f0(x), the unique solution is given by:

f(x, t) =

∫ ℓ

0

G(x, y, t)f0(y)dy+

∫ t

0

∫ ℓ

0

G(x, y, t−τ)Φ(y, τ)dydτ+a
∫ t

0

∂yG(x, 0, t−τ)g0(τ)dτ−a
∫ t

0

∂yG(x, ℓ, t−τ)gℓ(τ)dτ

where Gabc(x, y, t) is the appropriate Green’s function:

Gabc(x, y, t) =
2

ℓ
e

(
b
2a (y−x)+

(
c− b2

4a

)
t
) ∞∑
n=1

sin
(nπx

ℓ

)
sin
(nπy

ℓ

)
e−

an2π2

ℓ2
t (65)

which is also written in terms of eigenfunctions and eigenvalues as

Gabc(x, y, t) =

∞∑
n=1

γn(x, y)e
−λnt (66)

where λn =
(
c− b2

4a

)
+ an2π2

ℓ2 and γn(x, y) =
2
ℓ e

b
2a (y−x) sin

(
nπx
ℓ

)
sin
(
nπy
ℓ

)
.

Lemma 5. For a PDE of the form:

∂tf(x, t) = −a∂2xf(x, t)− b∂xf(x, t)− cf(x, t)− Φ(x, t)

for x ∈ [0, ℓ], t ∈ [0, T ], with Dirchlet boundary conditions f(0, t) = g0(t) and f(ℓ, t) = gℓ(t), and terminal
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condition f(x, 0) = fT (x), the unique solution is given by:

f(x, t) =

∫ ℓ

0

Gabc(x, y, T − t)fT (y)dy +

∫ T

t

∫ ℓ

0

Gabc(x, y, τ − t)Φ(y, τ)dydτ

+ a

∫ T

t

∂yGabc(x, 0, τ − t)g0(τ)dτ − a

∫ T

t

∂yGabc(x, ℓ, τ − t)gℓ(τ)dτ (67)

where Gabc(x, y, t) is given by equation (65).

Proof. Use a change of variable to redefine the problem: let u = T − t and define

h(x, u) ≡ f(x, T − u)

Then the PDE becomes:

∂uh(x, u) = a∂2xh(x, u) + b∂xh(x, u) + ch(x, u) + Φ(x, T − u)

with initial condition h(x, 0) = fT (x), and Dirchlet boundary conditions h(0, u) = g0(T − u) and h(ℓ, u) =

gℓ(T − u).

Per Property 3, the unique solution is given by:

h(x, u) =

∫ ∞

−∞
Gabc(x, y, u)fT (y)dy +

∫ u

0

∫ ∞

−∞
Gabc(x, y, u− ω)Φ(y, T − ω)dydω

+ a

∫ u

0

∂yGabc(x, 0, u− ω)g0(T − ω)dω − a

∫ u

0

∂yGabc(x, ℓ, u− ω)gℓ(T − ω)dω

Transforming back to the original variables (using ω = T − τ and u = T − t), we have

h(x, u) =

∫ ∞

−∞
Gabc(x, y, u)fT (y)dy +

∫ T

T−u

∫ ∞

−∞
Gabc(x, y, u− T + τ)Φ(y, τ)dydτ

+ a

∫ T

T−u
∂yGabc(x, 0, u− T + τ)g0(τ)dτ − a

∫ T

T−u
∂yGabc(x, ℓ, u− T + τ)gℓ(τ)dτ

=

∫ ∞

−∞
Gabc(x, y, T − t)fT (y)dy +

∫ T

t

∫ ∞

−∞
Gabc(x, y, τ − t)Φ(y, τ)dydτ

+ a

∫ T

t

∂yGabc(x, 0, τ − t)g0(τ)dτ − a

∫ T

t

∂yGabc(x, ℓ, τ − t)gℓ(τ)dτ

= h(x, T − t) = f(x, t)
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C Steady-State

C.1 Steady-State Value Function

The firm’s steady-state value function vss(x) solves the steady-state HJB

ρvss(x) = −Bx2 − π̄v′ss(x) + νv′′ss(x) + ζ
(
vss(x

∗)− vss(x)
)
, x ∈ (x, x̄), (68)

which is a second-order ODE on the steady-state inaction interval. The free boundaries xss, x
∗
ss, and x̄ss

are determined jointly with vss(·) by the usual value-matching and smooth-pasting conditions:

Value-matching vss(x) = vss(x
∗) + Ψ = vss(x̄)

Reset optimality ∂xvss(x
∗) = 0

Smooth-pasting ∂xvss(x) = 0 = ∂xvss(x̄)

Rearrange the HJB (68) as

νv′′ss(x)− π̄v′ss(x)− (ρ+ ζ)vss(x) = Bx2 − ζvss(x
∗), x ∈ (x, x̄). (69)

The homogeneous part,

νv′′h(x)− π̄v′h(x)− (ρ+ ζ)vh(x) = 0, (70)

has exponential solutions. The characteristic equation

νr2 − π̄r − (ρ+ ζ) = 0

has two real roots

r1,2 =
π̄ ±

√
π̄2 + 4ν(ρ+ ζ)

2ν
, (71)

so the homogeneous solution is

vh(x) = C1e
r1x + C2e

r2x, (72)

for constants C1, C2. Given some particular solution vp(x), the value function solving the HJB is given by

vss(x) = vp(x) + vh(x).

The five boundary conditions pin down the five unknowns (x∗ss, xss, x̄ss, C1, C2), which can be solved

numerically.
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C.2 Steady-state Stationary Distribution

Write the steady-state Kolmogorov forward equation on the inaction region (set ∂th = 0):

0 = ν∂2xhss(x) + π̄∂xhss(x)− ζhss(x) + Fss δ(x− x∗ss), x ∈ [x, x̄] (73)

with absorbing boundary conditions

hss(x) = 0 = hss(x̄),

normalization ∫ x̄

x

hss(x) dx = 1,

and the convention that hss(x) = 0 for x /∈ [x, x̄].

Away from the reset point x∗ss, the distribution is differentiable and the steady-state KFE on each open

interval reduces to the homogeneous ODE

νh′′ss(x) + π̄h′ss(x)− ζhss(x) = 0, x ∈ (x, x∗ss) ∪ (x∗ss, x̄) (74)

The characteristic equation is

νr2 + π̄r − ζ = 0,

with explicit roots

r1,2 =
−π̄ ±

√
π̄2 + 4νζ

2ν
(75)

Note that for the parameter values of interest (ν > 0, ζ > 0) the discriminant is strictly positive and the

two roots are real.

Because the homogeneous coefficients are identical on both sides, the exponential basis given by r1, r2 is

shared. Thus the general piecewise form is

hss(x) =

hL(x) = ALe
r1x +BLe

r2x, x ∈ [x, x∗ss],

hR(x) = ARe
r1x +BRe

r2x, x ∈ [x∗ss, x̄],

The four coefficients (AL, BL, AR, BR) are pinned down by four linear conditions: the two absorbing

boundary conditions hss(x) = 0, hss(x̄) = 0; continuity at the reset point hL(x
∗
ss) = hR(x

∗
ss); and the

normalization condition
∫ x̄
x
hss(x) dx = 1.

Two of the coefficients are easily determined from the absorbing boundary conditions. From hss(x) = 0:

AL = −BLe(r2−r1)x (76)
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From hss(x̄) = 0:

AR = −BRe(r2−r1)x̄ (77)

In the steady-state, the FPA is given by

Fss = νh′ss(x) + π̄hss(x)− νh′ss(x̄)− π̄hss(x̄) + ζ (78)

Given the absorbing boundary conditions hss(x) = hss(x̄) = 0, this simplifies to Fss = νh′ss(x)−νh′ss(x̄)+ζ.

This flow of firms re-enters the distribution at x∗ss; the of firms in either direction from this point must sum

to Fss:

Fss = ν (h′L(x
∗
ss)− h′R(x

∗
ss))

where now the drift terms disappear because the continuity condition implies π̄ (hL(x
∗)− hR(x

∗)) = 0.

In practice the small 4× 4 linear system for (AL, BL, AR, BR) is assembled and solved numerically (with

attention to conditioning); once the coefficients are known the piecewise density is completely determined.

D Lifting Functions

The eigenfunction expansion in Lemma 2 uses eigenfunctions satisfying homogeneous Dirichlet boundary

conditions. Infinite sums of these eigenfunctions converge almost everywhere to the true solution. However,

while they converge in a neighborhood around the boundary points, they do not converge at the boundaries

themselves. For most features of the price gap distribution this distinction does not matter, but for the flow

of firms out of the boundaries, which is determined by the distribution level and derivative at the critical

points, it does.

This section constructs lifting functions that resolve these difficulties by solving the problematic terms

with closed-form expressions.

D.1 Lifting Function for Reset Point Perturbations

With the standard Green’s function approach, the effects associated with changes the reset point x∗ are

problematic, with non-convergent coefficient series.

The key idea is to construct a “lifting function” Jx∗(x) that solves the same spatial differential equation

as the Green’s function, but with a δ′(x−x∗) source rather than a δ(x−x∗) source. The contribution of this

lifting function to the frequency perturbation F̂ can be computed in closed form, yielding a critical-point

coefficient φx∗ that captures the divergent part of the eigenfunction sum.

Lemma 6. Let K = ν∂2x + π̄∂x − ζ be the KFE spatial operator with ζ > 0. There exists a function

Jx∗ : [x, x̄] → R satisfying

KJx∗(x) = −δ′(x− x∗) (79)
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with homogeneous Dirichlet boundary conditions Jx∗(x) = Jx∗(x̄) = 0.

Define the characteristic roots

r1 =
−π̄ +

√
π̄2 + 4νζ

2ν
> 0, r2 =

−π̄ −
√
π̄2 + 4νζ

2ν
< 0

and the Neumann basis functions

ψL(x) = r2e
r1(x−x) − r1e

r2(x−x), ψR(x) = r2e
r1(x−x̄) − r1e

r2(x−x̄)

which satisfy KψL = KψR = 0 with ψ′
L(x) = ψ′

R(x̄) = 0. Then

Jx∗(x) =


− ψR(x

∗)

νWN (x∗)
ψ′
L(x) x < x∗

− ψL(x
∗)

νWN (x∗)
ψ′
R(x) x > x∗

(80)

where

WN (x∗) = ψL(x
∗)ψ′

R(x
∗)− ψ′

L(x
∗)ψR(x

∗)

Proof. I construct a function jx∗(x) satisfying Kjx∗ = −δ(x − x∗) with Neumann boundary conditions

j′x∗(x) = j′x∗(x̄) = 0. Constructing jx∗ requires basis functions satisfying Kψ = 0 with a zero-derivative

condition at one boundary. For ψL(x) = aer1(x−x) + ber2(x−x), the condition ψ′
L(x) = ar1 + br2 = 0

gives a/b = −r2/r1. Taking a = r2 and b = −r1 yields ψL(x) = r2e
r1(x−x) − r1e

r2(x−x). Similarly,

ψR(x) = r2e
r1(x−x̄) − r1e

r2(x−x̄) satisfies ψ′
R(x̄) = 0.

The Neumann Green’s function is jx∗(x) = BLψL(x) for x < x∗ and jx∗(x) = BRψR(x) for x > x∗. The

matching conditions at x∗ are continuity of jx∗ and a jump of −1/ν in j′x∗ :

BLψL(x
∗) = BRψR(x

∗), BRψ
′
R(x

∗)−BLψ
′
L(x

∗) = −1

ν

Solving gives BL = −ψR(x∗)/[νWN (x∗)] and BR = −ψL(x∗)/[νWN (x∗)].

Finally let Jx∗(x) = j′x∗(x). Since K has constant coefficients, differentiating Kjx∗ = −δ(x − x∗) gives

KJx∗ = −δ′(x−x∗). The Dirichlet boundary conditions Jx∗(x) = Jx∗(x̄) = 0 hold because j′x∗(x) = j′x∗(x̄) =

0 by the Neumann conditions on jx∗ . Explicitly, Jx∗(x) = BLψ
′
L(x) for x < x∗ and Jx∗(x) = BRψ

′
R(x) for

x > x∗, which gives (80).

Lemma 7. Let Jx∗ be the lifting function from Lemma 6. Define the critical-point coefficient

φx∗ ≡ −Fssν (J ′
x∗(x)− J ′

x∗(x̄))
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Then

φx∗ =
Fssr1r2(r1 − r2)

(
ψR(x

∗)− ψL(x
∗)
)

WN (x∗)
(81)

where ψL, ψR, and WN are defined in Lemma 6.

Proof. From (80), J ′
x∗(x) = BLψ

′′
L(x) where BL = −ψR(x∗)/[νWN (x∗)]. Computing the derivative, ψ′

L(x) =

r1r2(e
r1(x−x) − er2(x−x)), so ψ′′

L(x) = r1r2(r1 − r2). Therefore

J ′
x∗(x) = −ψR(x

∗) · r1r2(r1 − r2)

νWN (x∗)

Similarly, J ′
x∗(x̄) = BRψ

′′
R(x̄) = −ψL(x∗) · r1r2(r1 − r2)/[νWN (x∗)]. Substituting:

φx∗ = −Fssν
(
J ′
x∗(x)− J ′

x∗(x̄)
)
=
Fssr1r2(r1 − r2)

WN (x∗)

(
ψR(x

∗)− ψL(x
∗)
)

D.2 Lifting Functions for Boundary Perturbations

When the inaction boundaries move, the absorbing boundary conditions for the distribution become inho-

mogeneous: ĥ(x, t) = −h′ss(x)x̂(t) and ĥ(x̄, t) = −h′ss(x̄)ˆ̄x(t). Rather than expanding these inhomogeneous

conditions directly in eigenfunctions (which diverges), we construct harmonic lifting functions that satisfy

the boundary conditions exactly and contribute algebraically to the aggregate quantities.

Lemma 8. Let K = ν∂2x + π̄∂x − ζ be the KFE spatial operator with ζ > 0. Define the characteristic roots

r1 =
−π̄ +

√
π̄2 + 4νζ

2ν
> 0, r2 =

−π̄ −
√
π̄2 + 4νζ

2ν
< 0 (82)

and let ℓ = x̄− x denote the width of the inaction region.

There exist harmonic lifting functions Hx : [x, x̄] → R and Hx̄ : [x, x̄] → R satisfying

KHx(x) = 0, Hx(x) = 1, Hx(x̄) = 0 (83)

KHx̄(x) = 0, Hx̄(x) = 0, Hx̄(x̄) = −1 (84)

The explicit solutions are

Hx(x) =
er2(x−x) − er1(x−x) · e(r2−r1)ℓ

1− e(r2−r1)ℓ
(85)

Hx̄(x) =
er1(x−x) − er2(x−x)

er2ℓ − er1ℓ
(86)

Proof. The general solution to Ku = 0 is u(x) = C1e
r1(x−x) + C2e

r2(x−x).

55



For Hx: The boundary conditions Hx(x) = 1 and Hx(x̄) = 0 give

C1 + C2 = 1

C1e
r1ℓ + C2e

r2ℓ = 0

Solving: C1 = −er2ℓ/(er1ℓ − er2ℓ) and C2 = er1ℓ/(er1ℓ − er2ℓ). Substituting and simplifying yields (85).

For Hx̄: The boundary conditions Hx̄(x) = 0 and Hx̄(x̄) = −1 give

C1 + C2 = 0

C1e
r1ℓ + C2e

r2ℓ = −1

Solving: C1 = −1/(er1ℓ − er2ℓ) and C2 = 1/(er1ℓ − er2ℓ). Substituting yields (86).

Lemma 9. The derivatives of the harmonic lifting functions at the boundaries are:

H ′
x(x) =

r2 − r1e
(r2−r1)ℓ

1− e(r2−r1)ℓ
(87)

H ′
x(x̄) =

(r2 − r1)e
r2ℓ

1− e(r2−r1)ℓ
(88)

H ′
x̄(x) =

r1 − r2
er2ℓ − er1ℓ

(89)

H ′
x̄(x̄) =

r1e
r1ℓ − r2e

r2ℓ

er2ℓ − er1ℓ
(90)

Proof. Direct differentiation of (85) and (86). For Hx:

H ′
x(x) =

r2e
r2(x−x) − r1e

r1(x−x) · e(r2−r1)ℓ

1− e(r2−r1)ℓ

Evaluating at x = x gives (87); at x = x̄ gives (88). The formulas for H ′
x̄ follow similarly.

Lemma 10. Let Hx and Hx̄ be the harmonic lifting functions from Lemma 8. The critical-point coefficients

for the aggregate gap are

ξx ≡ −h′ss(x)
∫ x̄

x

xHx(x) dx (91)

ξx̄ ≡ −h′ss(x̄)
∫ x̄

x

xHx̄(x) dx (92)

These integrals are well-defined and finite since Hx and Hx̄ are smooth on [x, x̄].
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Explicitly, using the exponential forms (85)–(86):

∫ x̄

x

xHx(x) dx =
1

1− e(r2−r1)ℓ

[
I2 − e(r2−r1)ℓI1

]
(93)∫ x̄

x

xHx̄(x) dx =
1

er2ℓ − er1ℓ
[I1 − I2] (94)

where

Ik ≡
∫ x̄

x

x erk(x−x)dx =
1

r2k

[
(rkx̄− 1)erkℓ − (rkx− 1)

]
, k = 1, 2

Proof. The definitions (91)–(92) follow from the critical-point decomposition (27): the boundary contribu-

tion to ĥcrit is −h′ss(x)x̂(t)Hx(x) + h′ss(x̄)ˆ̄x(t)Hx̄(x), and the aggregate gap contribution is X̂crit,bc(t) =∫
x (−h′ss(x)x̂(t)Hx(x) + h′ss(x̄)ˆ̄x(t)Hx̄(x)) dx.

The integrals Ik are computed by integration by parts:

∫ x̄

x

x erk(x−x)dx =

[
x

rk
erk(x−x)

]x̄
x

− 1

rk

∫ x̄

x

erk(x−x)dx

which yields the stated formula after simplification.

Lemma 11. Let Hx and Hx̄ be the harmonic lifting functions from Lemma 8. The critical-point coefficients

for the frequency of price adjustment are

φx ≡ −h′ss(x)
[
ν
(
H ′
x(x)−H ′

x(x̄)
)
+ π̄

]
(95)

φx̄ ≡ −h′ss(x̄)
[
ν
(
H ′
x̄(x)−H ′

x̄(x̄)
)
+ π̄

]
(96)

Using the derivatives from Lemma 9:

φx = −h′ss(x)
[
ν · (r2 − r1)(1− er2ℓ)

1− e(r2−r1)ℓ
+ π̄

]
(97)

φx̄ = −h′ss(x̄)
[
ν · (r1 − r2)(1− er1ℓ)

er2ℓ − er1ℓ
+ π̄

]
(98)

Proof. The frequency perturbation from the boundary-lifting function is

F̂bc(t) = ν∂xĥbc(x, t) + π̄ĥbc(x, t)− ν∂xĥbc(x̄, t)− π̄ĥbc(x̄, t)

Substituting ĥbc(x, t) = −h′ss(x)x̂(t)Hx(x) + h′ss(x̄)ˆ̄x(t)Hx̄(x) and using the boundary values Hx(x) = 1,
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Hx(x̄) = 0, Hx̄(x) = 0, Hx̄(x̄) = −1:

F̂bc(t) = −h′ss(x)x̂(t)
[
νH ′

x(x) + π̄ − νH ′
x(x̄)

]
+ h′ss(x̄)ˆ̄x(t) [νH

′
x̄(x)− νH ′

x̄(x̄) + π̄]

This gives F̂bc(t) = φxx̂(t)− φx̄ ˆ̄x(t) with coefficients as defined.

The explicit formulas follow by substituting the derivatives from Lemma 9 and simplifying:

H ′
x(x)−H ′

x(x̄) =
r2 − r1e

(r2−r1)ℓ − (r2 − r1)e
r2ℓ

1− e(r2−r1)ℓ

=
(r2 − r1)(1− er2ℓ)

1− e(r2−r1)ℓ

and similarly for H ′
x̄(x)−H ′

x̄(x̄).

E Dynamic Distribution in Discrete Time

This section derives the discrete-time dynamics of the distribution perturbation ĥ(x, t), building on the

continuous-time solution in Lemma 2. These results are used to construct the plot in Figure 1.

E.1 Discrete-Time Recursion for the Distribution

Proposition 8. The discrete time approximation of the interior distribution perturbation from Lemma 2 is

ĥint(x, t) =

∞∑
n=1

ĥint,n(x, t)

where each modal contribution admits the recursive approximation (with unit time step)

ĥint,n(x, t) ≈ ϖF,n(x) F̂t +ϖx∗,n(x)∆x̂
∗
t + h′ss(x)ϖH,x,n(x)∆x̂t − h′ss(x̄)ϖH,x̄,n(x)∆ˆ̄xt + θn ĥint,n(x, t− 1)

(99)

where θn ≡ e−λKFE,n and ∆ŷt ≡ ŷt − ŷt−1 denotes the first difference. The coefficient functions are

ϖF,n(x) ≡ γKFE,n(x, x
∗) (100)

ϖx∗,n(x) ≡ FssϖJ,n(x) + FssλKFE,n

∫ x̄

x

γKFE,n(x, y)Jx∗(y) dy (101)

ϖH,x,n(x) ≡
ν

λKFE,n
∂yγKFE,n(x, x) (102)

ϖH,x̄,n(x) ≡
ν

λKFE,n
∂yγKFE,n(x, x̄) (103)

with ϖJ,n(x) as defined in Lemma 2.
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Proof. Lemma 2 gives the interior component as an integral over time-derivatives of the forcing variables.

To convert to a recursion in levels, apply integration by parts to each term.

Consider the boundary term
∫ t
0
e−λ(t−τ)h′ss(x)x̂

′(τ)ϖH,x,n(x) dτ where ϖH,x,n(x) = ν
λ∂yγKFE,n(x, x).

Integration by parts with u = x̂(τ) and dv = e−λ(t−τ)dτ yields

∫ t

0

e−λ(t−τ)h′ss(x)x̂
′(τ) · ν

λ
∂yγKFE,n(x, x) dτ

= h′ss(x)ν∂yγKFE,n(x, x) ·
1

λ

[
e−λ(t−τ)x̂(τ)

]t
0
+ (decayed integral)

= h′ss(x)ν∂yγKFE,n(x, x) ·
(
x̂(t)− e−λtx̂(0) +

∫ t

0

e−λ(t−τ)x̂(τ) dτ

)
/λ

Combined with the initial condition term h′ss(x)x̂(0)ϖH,x,n(x)e
−λt from Lemma 2, the e−λtx̂(0) terms cancel,

leaving an integral over levels.

The discrete-time approximation (Riemann sum with step ∆t = 1) of an integral
∫ t
0
e−λ(t−τ)y(τ) dτ is

t−1∑
s=0

e−λ(t−s)y(s) ≈ y(t) + e−λ
t−2∑
s=0

e−λ(t−1−s)y(s)

Recognizing the second term as θn times the integral at t − 1, and noting that the cumulative sum can be

written in terms of differences:

t∑
s=0

e−λ(t−s)y(s) =

t∑
s=0

e−λ(t−s)∆ys + θn

t−1∑
s=0

e−λ(t−1−s)y(s)

where the first-difference formulation isolates the new contribution at time t. This yields the recursion

(99).

E.2 Mass Conservation

The distribution perturbation ĥ(x, t) represents the change in the density of firms at each price gap x. Since

the total mass of firms is fixed at unity, the perturbation must integrate to zero for all t:

M̂(t) ≡
∫ x̄

x

ĥ(x, t) dx = 0 (104)

The mass decomposes into critical-point and interior components:

M̂(t) = M̂crit(t) + M̂int(t) (105)

where

M̂crit(t) = −h′ss(x)x̂(t)ϑH,x + h′ss(x̄)ˆ̄x(t)ϑH,x̄ − Fssx̂
∗(t)ϑJ (106)
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and the critical-point mass coefficients are

ϑH,x ≡
∫ x̄

x

Hx(x) dx, ϑH,x̄ ≡
∫ x̄

x

Hx̄(x) dx, ϑJ ≡
∫ x̄

x

Jx∗(x) dx (107)

The interior mass decomposes as M̂int(t) =
∑
n M̂int,n(t), where each component satisfies the recursion

M̂int,n,t = ∆tϑF,nF̂t + ϑx∗′,n∆x̂
∗
t + ϑx′,n∆x̂t − ϑx̄′,n∆ˆ̄xt + θnM̂int,n,t−∆t (108)

with interior mass coefficients

ϑF,n ≡
∫ x̄

x

ϖF,n(x) dx, ϑx∗′,n ≡ Fss

∫ x̄

x

ϖJ,n(x) dx, ϑx′,n ≡ h′ss(x)

∫ x̄

x

ϖH,x,n(x) dx, ϑx̄′,n ≡ h′ss(x̄)

∫ x̄

x

ϖH,x̄,n(x) dx

(109)

E.2.1 Determining F via Mass Conservation

The constraint M̂(t) = 0 provides an alternative method for computing the frequency of price adjustment.

Imposing M̂crit(t) +
∑
n M̂int,n(t) = 0 and solving for F̂t:

Proposition 9 (F from mass conservation). The frequency of price adjustment satisfies

F̂t =
−M̂crit,t −

∑
n

[
ϑx∗′,n∆x̂

∗
t + ϑx′,n∆x̂t − ϑx̄′,n∆ˆ̄xt + θnM̂int,n,t−∆t

]
∆t
∑
n ϑF,n

(110)

where M̂crit,t = −h′ss(x)x̂tϑH,x + h′ss(x̄)ˆ̄xtϑH,x̄ − Fssx̂
∗
tϑJ .

Proof. From (104), M̂crit,t +
∑
n M̂int,n,t = 0. Substituting (108) and collecting F̂t terms:

M̂crit,t +∆tF̂t
∑
n

ϑF,n +
∑
n

[
ϑx∗′,n∆x̂

∗
t + ϑx′,n∆x̂t − ϑx̄′,n∆ˆ̄xt + θnM̂int,n,t−∆t

]
= 0

Solving for F̂t yields (110).

Lemma 12 (Completeness relation for primed mass coefficients). The primed interior mass coefficients

satisfy the completeness relations

∞∑
n=1

ϑx∗′,n = FssϑJ ,

∞∑
n=1

ϑx′,n = h′ss(x)ϑH,x,

∞∑
n=1

ϑx̄′,n = h′ss(x̄)ϑH,x̄ (111)

where ϑJ , ϑH,x, ϑH,x̄ are the critical-point mass coefficients from (107).

Proof. The mass conservation constraint M̂crit,t +
∑
n M̂int,n,t = 0 must hold for arbitrary boundary per-

turbations. Consider a step change in boundaries at t = 0 starting from steady state, so that ∆x̂∗0 = x̂∗0,

∆x̂0 = x̂0, ∆ˆ̄x0 = ˆ̄x0, and M̂int,n,−∆t = 0. Set F̂0 = 0 (no flow perturbation at impact).
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The interior mass at t = 0 is:

M̂int,0 =
∑
n

M̂int,n,0 =
∑
n

ϑx∗′,nx̂
∗
0 +

∑
n

ϑx′,nx̂0 −
∑
n

ϑx̄′,n ˆ̄x0

The critical mass at t = 0 from (106) is:

M̂crit,0 = −h′ss(x)ϑH,xx̂0 + h′ss(x̄)ϑH,x̄ ˆ̄x0 − FssϑJ x̂
∗
0

Imposing M̂crit,0 + M̂int,0 = 0 and collecting terms by boundary variable:

x̂∗0 : − FssϑJ +
∑
n

ϑx∗′,n = 0

x̂0 : − h′ss(x)ϑH,x +
∑
n

ϑx′,n = 0

ˆ̄x0 : h′ss(x̄)ϑH,x̄ −
∑
n

ϑx̄′,n = 0

Since mass conservation must hold for arbitrary (x̂∗0, x̂0, ˆ̄x0), each coefficient equation must vanish separately,

yielding (111).

E.2.2 Relating Mass Coefficients to Frequency Coefficients

The mass-based approach is connected to the flux-based φ coefficients through spatial integration.

Lemma 13 (Relationship between ϑ and ξ coefficients). The mass coefficients satisfy

ϑx∗′,n = ξx∗′,n|x→1, ϑx′,n = ξx′,n|x→1, ϑx̄′,n = ξx̄′,n|x→1 (112)

where the notation ξ|x→1 means replacing the x weighting in the integral by 1.

Proof. By definition, ξx∗′,n = F
∫ x̄
x
xϖJ,n(x) dx while ϑx∗′,n = F

∫ x̄
x
ϖJ,n(x) dx. The relation is the same

with and without the x weighting.

Lemma 14 (Relationship between ϑF and φF ). The frequency forcing coefficients satisfy

∞∑
n=1

ϑF,n = 1 (113)

Proof. By definition, ϑF,n =
∫ x̄
x
ϖF,n(x) dx =

∫ x̄
x
γKFE,n(x, x

∗) dx. By the eigenfunction completeness

relation
∑
n γKFE,n(x, y) = δ(x− y):

∑
n

ϑF,n =

∫ x̄

x

∑
n

γKFE,n(x, x
∗) dx =

∫ x̄

x

δ(x− x∗) dx = 1
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The mass conservation approach (110) and the flux-based approach are equivalent. The KFE flux con-

dition at the boundaries gives

F̂ (t) = ν
(
∂xĥ(x, t)− ∂xĥ(x̄, t)

)
+ π̄

(
h′ss(x̄)ˆ̄x(t)− h′ss(x)x̂(t)

)
Integrating the KFE ∂tĥ = ν∂2xĥ− π̄∂xĥ−ζĥ+F̂ δ(x−x∗) over [x, x̄] and using mass conservation

∫
ĥ dx = 0:

0 = ν
(
∂xĥ(x̄)− ∂xĥ(x)

)
− π̄

(
ĥ(x̄)− ĥ(x)

)
+ F̂

With the linearized boundary conditions ĥ(x) = −h′ss(x)x̂ and ĥ(x̄) = −h′ss(x̄)ˆ̄x, this recovers the flux

formula. The two approaches encode the same physical constraint from different perspectives: mass conser-

vation versus boundary flux balance.

E.2.3 Analytical Formulas for Mass Coefficients

The mass coefficients (109) require spatial integrals over the eigenfunction projections without the x-

weighting used in the ξ coefficients. Define the fundamental integral

In ≡
∫ x̄

x

e−αx sin
(
ωn(x− x)

)
dx (114)

where α = π̄/(2ν) and ωn = nπ/ℓ.

Lemma 15. The integral In has the closed form

In =
ωn

α2 + ω2
n

(
e−αx − (−1)ne−αx̄

)
(115)

Proof. Using the standard integral
∫
eax sin(bx) dx = eax

a2+b2 (a sin(bx)− b cos(bx)):

In =

∫ x̄

x

e−αx sin
(
ωn(x− x)

)
dx

=

[
e−αx

α2 + ω2
n

(
−α sin(ωn(x− x))− ωn cos(ωn(x− x))

)]x̄
x

At x = x: sin(0) = 0, cos(0) = 1, giving −ωne−αx/(α2 + ω2
n). At x = x̄: sin(ωnℓ) = sin(nπ) = 0,

cos(ωnℓ) = (−1)n, giving −ωn(−1)ne−αx̄/(α2 + ω2
n). The result follows.
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Proposition 10. The interior mass coefficients (109) are:

ϑF,n =
2

ℓ
sin
(
ωn(x

∗ − x)
)
eαx

∗
In (116)

ϑx′,n = h′ss(x)
ν

λKFE,n

2ωn
ℓ
eαxIn (117)

ϑx̄′,n = h′ss(x̄)
ν

λKFE,n

2ωn
ℓ

(−1)neαx̄In (118)

The coefficient ϑx∗′,n requires numerical integration over the lifting function Jx∗ .

Proof. By definition,

ϑF,n =

∫ x̄

x

γKFE,n(x, x
∗) dx =

∫ x̄

x

2

ℓ
eα(x

∗−x) sin(ωn(x− x)) sin(ωn(x
∗ − x)) dx

Factoring out terms independent of x:

ϑF,n =
2

ℓ
sin(ωn(x

∗ − x))eαx
∗
∫ x̄

x

e−αx sin(ωn(x− x)) dx =
2

ℓ
sin(ωn(x

∗ − x))eαx
∗
In

The projection kernel is ϖH,x,n(x) =
ν

λKFE,n
∂yγKFE,n(x, y)

∣∣
y=x

. From

∂yγKFE,n(x, y) =
2

ℓ
eα(y−x) sin(ωn(x− x))

(
α sin(ωn(y − x)) + ωn cos(ωn(y − x))

)
evaluating at y = x where sin(0) = 0 and cos(0) = 1:

∂yγKFE,n(x, x) =
2ωn
ℓ
eα(x−x) sin(ωn(x− x))

Thus

ϑx′,n = h′ss(x)
ν

λKFE,n

∫ x̄

x

2ωn
ℓ
eα(x−x) sin(ωn(x− x)) dx = h′ss(x)

ν

λKFE,n

2ωn
ℓ
eαxIn

Similarly, at y = x̄ where sin(ωnℓ) = 0 and cos(ωnℓ) = (−1)n:

∂yγKFE,n(x, x̄) =
2ωn
ℓ

(−1)neα(x̄−x) sin(ωn(x− x))

giving

ϑx̄′,n = h′ss(x̄)
ν

λKFE,n

2ωn
ℓ

(−1)neαx̄In

F Impact Effects

This section derives the analytical instantaneous responses of aggregate variables to marginal cost shocks.

63



F.1 Initial Condition and Boundary Discontinuity

The initial condition ĥ(x, 0) = 0 holds on the interior of the inaction region, i.e., for x ∈ (x, x̄). However,

the linearized absorbing boundary conditions (21) require ĥ(x, t) = −h′ss(x)x̂(t) and ĥ(x̄, t) = −h′ss(x̄)ˆ̄x(t)

for t > 0. When x̂(0) ̸= 0 or ˆ̄x(0) ̸= 0, these boundary values are non-zero while the interior remains at zero,

creating a discontinuity between the interior and the boundaries as t→ 0, which I denote as t = 0+.

Since ĥ(x, 0+) = 0 almost everywhere, the Lebesgue integral
∫ x̄
x
x ĥ(x, 0) dx = 0, so X̂(0) = 0.

When the aggregate shock arrives at t = 0, no firm has yet had time to adjust its price, so ĥ(x, 0) = 0 on

the open interior as stated in (23). Because this exact initial condition is uniformly zero, it is uninformative

about the subsequent dynamics. Therefore this section characterize the limiting initial condition at t = 0+,

which is zero almost everywhere, but with three spatial discontinuities corresponding to the three critical

points.

At each boundary, the linearized Dirichlet condition (21) imposes ĥ(x, t) = −h′ss(x)x̂(t) and ĥ(x̄, t) =

−h′ss(x̄)ˆ̄x(t) for t > 0. These values are nonzero while the interior remains at zero as t → 0, producing two

spatial discontinuities:

ĥ(x, 0+) = −h′ss(x)x̂(0), ĥ(x+, 0+) = 0; ĥ(x̄−, 0+) = 0, ĥ(x̄, 0+) = −h′ss(x̄)ˆ̄x(0) (119)

Why? If a shock causes the lower boundary to shift right (x̂(0) > 0), the old boundary point x is now

outside the inaction region, and the density will fall in the neighborhood of that point as firms exit. But

this linearization corresponds to a marginal change in the boundary, so on impact that marginal change only

affects the density at the boundary itself. A symmetric argument applies at x̄: the new boundary shifts

to the right, so the density increases. Figure 9 demonstrates by plotting a hypothetical example under the

baseline Calvo-plus calibration where all critical points shift to the right by the same quantity. In the left

panel, the initial condition (in black) has discontinuities at the boundaries.

At the reset point, the perturbation x̂∗(0) > 0 means that adjusting firms now reset to a location slightly

right of the old x∗. Since a flow Fss of firms per unit time resets to x∗, the perturbation removes density just

below x∗ and deposits it just above. This effect shows up as the δ′(x − x∗) term in the KFE (20). Again,

Figure 9 plots this discontinuity in the t = 0+ initial condition, except the discontinuity at x∗ is different

when taking the limit from the right versus from the left.

To understand this dipole structure, consider again the distribution’s decomposition in Lemma 2. The

critical-point component (27) carries the lifting function Jx∗ from Lemma 6, which jumps at x∗ by [Jx∗ ]x∗ =

−1/ν. The boundary-harmonic functions Hx and Hx̄ are smooth at x∗, so ĥcrit inherits the full jump:

[ĥcrit]x∗(t) = −Fssx̂∗(t) [Jx∗ ]x∗ =
Fssx̂

∗(t)

ν
(120)

Meanwhile, the interior component ĥint(x, t) is smooth at x∗ for all t > 0. Therefore the total jump remains
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Notes: Left panel: the distribution perturbation at t = 0+, showing all three spatial discontinuities. Boundary values
(filled circles) from the linearized absorbing conditions (119); the dipole at x∗ (open circles with directional whiskers)

has different one-sided limits;vertical bars mark each discontinuity. Right panel: the three components of ĥcrit(x, 0)

from (27) together with the interior component ĥint(x, 0). The steady state corresponds to the Calvo-plus calibration.
All quantities normalized by a unit shock (x̂(0) = ˆ̄x(0) = x̂∗(0) = 1).

Figure 9: Limiting initial condition ĥ(x, 0+) and its critical-point decomposition

[ĥ]x∗(t) = [ĥcrit]x∗(t) = Fssx̂
∗(t)/ν for t > 0.

F.2 Impact Effect on the Frequency of Price Adjustment

The impact effect on the FPA requires careful treatment because the spatial derivatives appearing in the

flux formula (22) become singular when boundary conditions jump discontinuously.

For computing the singular part of the diffusive flux ν∂xĥ, it is helpful to focus on the limiting behavior

near each boundary separately, because for a small time interval t = ∆t after the shock, the distribution’s

behavior at each critical point has negligible effects on the others. Thus, for small ∆t, away from x∗ the

distribution is well described by the homogeneous component of the perturbed KFE:

[t ≈ 0, x≪ x∗, x≫ x∗] : ∂tĥ(x, t) ≈ ν∂2xĥ(x, t) + π̄∂xĥ(x, t)− ζĥ(x, t) (121)

Then, it is useful to transform this homogeneous KFE into the canonical heat equation by substituting

y = x− x and writing

w(y, t) = eπ̄/(2ν)y+(π̄2/(4ν)+ζ)tĥ(y + x, t) (122)

which satisfies ∂tw(y, t) = ν∂2xw(y, t) on [0, x̄− x]. Then in order to consider single boundaries alone, which

is valid for ∆t small, I will instead analyze this solution on the half line y ∈ [0,∞) with boundary condition
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w(0, t) = −h′ss(x)x̂(t). This is a useful strategy because this PDE has a known solution:23

Property 4 (Heat equation on the half-line). If w(y, t) satisfies the heat equation ∂tw = ν∂2yw on the

half-line y ≥ 0 with initial condition w(y, 0) = 0 and constant Dirichlet boundary condition w(0, t) = w0 for

t > 0. The solution is

w(y, t) = w0 erfc

(
y√
4νt

)
(123)

where erfc(z) = 2√
π

∫∞
z
e−ξ

2

dξ is the complementary error function. The spatial derivative at the boundary

is

∂yw(0, t) = − w0√
πνt

(124)

Property 4 allows for straightforward characterization of the derivative in a neighborhood near the bound-

ary. Lemma 16 follows:

Lemma 16. If the boundary perturbations x̂(t) and ˆ̄x(t) are continuous with x̂(0) and ˆ̄x(0) finite, and ∆t

is sufficiently small, then the FPA at time ∆t is approximately

F̂ (∆t) ≈
√

ν

π∆t

(
h′ss(x)x̂(∆t) + h′ss(x̄)ˆ̄x(∆t)

)
+
π̄

2

(
h′ss(x̄)ˆ̄x(∆t)− h′ss(x)x̂(∆t)

)
(125)

Proof. Near the lower boundary, for small time t = ∆t, the transformed distribution w(x, t) satisfies (by

Property 4)

w(x− x,∆t) = −h′ss(x)x̂(∆t) erfc
(
x− x√
4ν∆t

)
+ o(1)

The approximation error is only o(1) because of the continuity/finiteness assumption on x̂(t). The spatial

derivative is ∂yw(0,∆t) =
h′
ss(x)x̂(∆t)√

πν∆t
+ o(1). The spatial derivative relates to the original distribution by

∂xĥ(x, t) = ∂x

(
e−π̄/(2ν)(x−x)−(π̄2/(4ν)+ζ)tw(x− x, t)

)
= − π̄

2ν
e−π̄/(2ν)(x−x)−(π̄2/(4ν)+ζ)tw(x− x, t) + e−π̄/(2ν)(x−x)−(π̄2/(4ν)+ζ)t∂yw(x− x, t)

Evaluate at the lower boundary:

∂xĥ(x, t) = − π̄

2ν
e−(π̄2/(4ν)+ζ)t(−h′ss(x))x̂(t) + e−(π̄2/(4ν)+ζ)t∂yw(0, t)

which for small t = ∆t is

∂xĥ(x,∆t) =
π̄

2ν
e−(π̄2/(4ν)+ζ)∆th′ss(x)x̂(∆t) + e−(π̄2/(4ν)+ζ)∆th

′
ss(x)x̂(∆t)√
πν∆t

+ o(1)

= h′ss(x)x̂(∆t)

(
π̄

2ν
+

1√
πν∆t

)
+ o(1)

23See (Carslaw and Jaeger, 1959, Section 2.4) or (Polyanin, 2001, Section 3.1).
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Near the upper boundary, instead use the change of variable y = x̄− x ≥ 0 to write

w̃(y, t) = e−π̄/(2ν)y+(π̄2/(4ν)+ζ)tĥ(x̄− y, t)

so that ∂tw̃ = ν∂2yw. If y ≥ 0 with boundary condition w̃(0, t) = −h′ss(x̄)ˆ̄x(t), then for small time t = ∆t

w̃(x̄− x,∆t) = −h′ss(x̄)ˆ̄x(∆t) erfc
(
x̄− x√
4ν∆t

)
+ o(1)

with spatial derivative ∂yw̃(0,∆t) =
h′
ss(x)x̂(∆t)√

πν∆t
+ o(1). The spatial derivative relates to the original distri-

bution by

∂xĥ(x, t) = ∂x

(
eπ̄/(2ν)(x̄−x)−(π̄2/(4ν)+ζ)tw̃(x̄− x, t)

)
= − π̄

2ν
eπ̄/(2ν)(x̄−x)−(π̄2/(4ν)+ζ)tw̃(x̄− x, t)− eπ̄/(2ν)(x̄−x)−(π̄2/(4ν)+ζ)t∂yw̃(x̄− x, t)

Evaluate at the upper boundary:

∂xĥ(x̄, t) = − π̄

2ν
e−(π̄2/(4ν)+ζ)t(−h′ss(x̄))ˆ̄x(t)− e−(π̄2/(4ν)+ζ)t∂yw̃(0, t)

which for small t = ∆t is

∂xĥ(x̄,∆t) =
π̄

2ν
e−(π̄2/(4ν)+ζ)∆th′ss(x̄)ˆ̄x(∆t)− e−(π̄2/(4ν)+ζ)∆th

′
ss(x̄)ˆ̄x(∆t)√
πν∆t

+ o(1)

= h′ss(x̄)ˆ̄x(∆t)

(
π̄

2ν
− 1√

πν∆t

)
+ o(1)

The FPA formula (22) is F̂ (t) = ν∂xĥ(x, t) + π̄ĥ(x, t)− ν∂xĥ(x̄, t)− π̄ĥ(x̄, t). The diffusive contributions

are:

ν∂xĥ(x,∆t) = h′ss(x)x̂(∆t)

(
π̄

2
+

√
ν

π∆t

)
+ o(1)

−ν∂xĥ(x̄,∆t) = −h′ss(x̄)ˆ̄x(∆t)
(
π̄

2
−
√

ν

π∆t

)
+ o(1) = h′ss(x̄)ˆ̄x(∆t)

(
− π̄
2
+

√
ν

π∆t

)
+ o(1)

ν∂xĥ(x,∆t)− ν∂xĥ(x̄,∆t) = h′ss(x)x̂(∆t)

(
π̄

2
+

√
ν

π∆t

)
− h′ss(x̄)ˆ̄x(∆t)

(
− π̄
2
+

√
ν

π∆t

)
+ o(1)

The drift terms follow from the boundary conditions: π̄ĥ(x,∆t)−π̄ĥ(x̄,∆t) = π̄
(
−h′ss(x)x̂(∆t) + h′ss(x̄)ˆ̄x(∆t)

)
.

Summing all contributions:

F̂ (∆t) = h′ss(x)x̂(∆t)

(
π̄

2
+

√
ν

π∆t
− π̄

)
+ h′ss(x̄)ˆ̄x(∆t)

(
− π̄
2
+

√
ν

π∆t
+ π̄

)
+ o(1)

= h′ss(x)x̂(∆t)

(√
ν

π∆t
− π̄

2

)
+ h′ss(x̄)ˆ̄x(∆t)

(√
ν

π∆t
+
π̄

2

)
+ o(1)
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Rearranging gives (125).

Lemma 16 shows that the initial FPA is infinite: lim∆t→0 F̂ (∆t) = ±∞, where the sign depends on the

sign of
(
h′ss(x)x̂(0) + h′ss(x̄)ˆ̄x(0)

)
. This is because the immediate shift of the boundaries causes firms to

reset prices immediately. For large shocks, this leads to a non-zero mass of resetting firms. In this perturbed

economy, the marginal shock causes a zero mass of firms to reset, but the rate remains infinite. However, it

is only instantaneously singular; the FPA falls rapidly with ∆t, and is integrable.

Corollary 1. For a permanent marginal cost increase of size κ, if ∆t and π̄ are sufficiently small, then the

FPA at time ∆t is approximately

F̂ (∆t) ≈
(√

ν

π∆t
(h′ss(x) + h′ss(x̄)) +

π̄

2
(h′ss(x̄)− h′ss(x))

)
κ

and the average FPA over the interval is

Υ(∆t) ≡
(
2

√
ν

π∆t
(h′ss(x) + h′ss(x̄)) +

π̄

2
(h′ss(x̄)− h′ss(x))

)
κ

Proof. When trend inflation is near zero, the value function perturbation at the critical points is zero (Alvarez

et al., 2023) so the perturbed critical points (e.g. equation (43)) depend only on the present value of future

marginal costs. The marginal cost change is permanent, so the critical points move permanently. Because

of long-run neutrality (Definition 2) the critical points must all increase by κ.

Plug this change into the flow equation from Lemma 16:

F̂ (∆t) ≈
√

ν

π∆t
(h′ss(x)κ+ h′ss(x̄)κ) +

π̄

2
(h′ss(x̄)κ− h′ss(x)κ)

Collect terms to yield the desired expression.

Then, evaluate the integral:

∫ ∆t

0

(√
ν

π∆t
(h′ss(x) + h′ss(x̄)) +

π̄

2
(h′ss(x̄)− h′ss(x))

)
κdτ =

(
2

√
ν

π∆t
(h′ss(x) + h′ss(x̄)) +

π̄

2
(h′ss(x̄)− h′ss(x))

)
∆tκ

This is the cumulative price adjustment. Dividing by ∆t gives the average FPA.

G Price Change Statistics

This section derives a number of price change statistics in the steady state, which are used for calibrating

the model.
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G.1 Steady State Frequency of Price Adjustment

This subsection derives the components of the steady-state frequency of price adjustment Fss in terms of

primitive parameters and the steady-state distribution.

Per equation (78), the steady-state FPA is given by

Fss = νh′ss(x)− νh′ss(x̄) + ζ (126)

Each component of this equation corresponds to a different type of price adjustment: Fx ≡ νh′ss(x) denotes

resets from the lower boundary, Fx̄ ≡ −νh′ss(x̄) denotes resets from the upper boundary, and Fζ ≡ ζ denotes

random resets. Together, the steady-state FPA is decomposed as

Fss = Fx + Fx̄ + Fζ (127)

G.1.1 General Case with Drift

For general π̄ ̸= 0, the steady-state distribution has piecewise exponential form with shared roots r1, r2 of

the characteristic equation:

r1,2 =
−π̄ ±

√
π̄2 + 4νζ

2ν
(128)

The absorbing boundary conditions yield (76) and (77), reducing the system to two unknowns (BL, BR)

determined by continuity at x∗ and normalization.

Using (76), the derivative at the lower boundary simplifies:

h′ss(x) = ALr1e
r1x +BLr2e

r2x = BLe
r2x
(
r2 − r1e

(r1−r2)x
)

(129)

Similarly, using (77):

h′ss(x̄) = ARr1e
r1x̄ +BRr2e

r2x̄ = BRe
r2x̄
(
r2 − r1e

(r1−r2)x̄
)

(130)

The frequency components are:

Fx = νBLe
r2x
(
r2 − r1e

(r1−r2)x
)

(131)

Fx̄ = −νBRer2x̄
(
r2 − r1e

(r1−r2)x̄
)

(132)

Fζ = ζ (133)

where the coefficients BL and BR are determined by the remaining two linear conditions. This decomposition

shows how frequency depends on the distribution shape: when ζ is small, most adjustments occur at the

boundaries; when ζ is large, random adjustments dominate.
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G.1.2 Zero-Drift Special Case

When π̄ = 0, symmetry implies x∗ss = 0 and x̄ss = −xss ≡ ℓ/2. The roots become r1,2 = ±szd where

szd =
√
ζ/ν. The distribution is symmetric: h′ss(x) = −h′ss(x̄), so:

Fx = Fx̄ = νh′ss(x), Fss = 2νh′ss(x) + ζ (134)

From the boundary condition h(−ℓ/2) = 0 with hL(x) = ALe
szdx +BLe

−szdx:

AL = −BLe−szdℓ

Thus hL(x) = BL
(
e−szdx − e−szdℓeszdx

)
= 2BLe

−szdℓ/2 sinh(szd(x + ℓ/2)) for x ∈ [−ℓ/2, 0]. The derivative

at x = −ℓ/2 is:

h′(−ℓ/2) = 2BLe
−szdℓ/2szd

Normalization
∫ ℓ/2
−ℓ/2 hss(x) dx = 1 and symmetry determine

BL =
szd

4e−szdℓ/2(cosh(szdℓ/2)− 1)

Therefore:

Fss = 4νBLe
−szdℓ/2szd + ζ =

νs2zd
cosh(szdℓ/2)− 1

+ ζ =
ζ cosh(szdℓ/2)

cosh(szdℓ/2)− 1
(135)

with components:

Fx = Fx̄ =
ζ

2(cosh(szdℓ/2)− 1)
, Fζ = ζ (136)

Note that these sum to Fss:
ζ

cosh(szdℓ/2)−1 + ζ = ζ cosh(szdℓ/2)
cosh(szdℓ/2)−1 . The fraction of adjustments from each

boundary is:
Fx
Fss

=
Fx̄
Fss

=
1

2 cosh(szdℓ/2)
,

Fζ
Fss

=
cosh(szdℓ/2)− 1

cosh(szdℓ/2)
(137)

G.2 Average Price Adjustment

The adjustment from the lower boundary is always x∗ − x, while the adjustment from the upper boundary

is always x̄− x∗. These occur at frequencies Fx and Fx̄ respectively. When a firm with price gap x receives

a random adjustment opportunity at rate ζ, then its adjustment is x∗ − x.

Therefore, the mean adjustment is

µ1,adj ≡ E[x− x∗|adjust] = 1

Fss

(
Fx(x

∗ − x) + Fx̄(x
∗ − x̄) + ζ

∫ x̄

x

(x∗ − x)hss(x) dx

)
(138)

=
1

Fss

(
Fx(x

∗ − x) + Fx̄(x
∗ − x̄) + ζ(x∗ −X)

)
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where X is the average price gap.

In special case of zero drift (π̄ = 0), the distribution is symmetric so the average price adjustment is zero.

G.3 Variance of Price Adjustments

The second moment of price adjustment is

µ2,adj ≡ E[(x∗ − x)2|adjust] = 1

Fss

(
Fx(x

∗ − x)2 + Fx̄(x
∗ − x̄)2 + ζ

∫ x̄

x

(x∗ − x)2hss(x)dx

)
(139)

The variance of price adjustments is then

Var(x∗ − x|adjust) = µ2,adj − µ2
1,adj (140)

For algebraic purposes, we can decompose the weighted second moment contributions:

µ2,adj,x ≡
Fx
Fss

(x− x∗)2 (141)

µ2,adj,x̄ ≡ Fx̄
Fss

(x̄− x∗)2 (142)

µ2,adj,ζ ≡
ζ

Fss

∫ x̄

x

(x− x∗)2hss(x) dx (143)

so that E[(x∗ − x)2|adjust] = µ2,adj,x + µ2,adj,x̄ + µ2,adj,ζ .

G.3.1 Zero-Drift Special Case

When π̄ = 0, symmetry gives x∗ = 0, x̄ = −x = ℓ/2, and Fx = Fx̄. The mean adjustment vanishes by

symmetry:

µ1,adj =
1

Fss

[
Fx(0− (−ℓ/2)) + Fx̄(0− ℓ/2) + ζ(0− 0)

]
= 0 (144)

where the average price gap X =
∫ ℓ/2
−ℓ/2 xhss(x) dx = 0 by symmetry. Therefore, the variance equals the

second moment.

The second moment contributions from boundaries are equal. Using (137), Fx/Fss = 1/(2 cosh(szdℓ/2)):

µ2,adj,x = µ2,adj,x̄ =
Fx
Fss

(ℓ/2)2 =
(ℓ/2)2

2 cosh(szdℓ/2)
=

ℓ2

8 cosh(szdℓ/2)
(145)

For the random adjustment term, using the symmetric density hL(x) =
szd

2(cosh(szdℓ/2)−1) sinh(szd(x+ℓ/2)):

µ2,adj,ζ =
ζ

Fss

∫ ℓ/2

−ℓ/2
x2hss(x) dx =

2ζ

Fss

∫ 0

−ℓ/2
x2hL(x) dx
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Substituting u = x+ ℓ/2 so that x = u− ℓ/2 and integrating from u = 0 to u = ℓ/2:

∫ 0

−ℓ/2
x2hL(x) dx =

szd
2(cosh(szdℓ/2)− 1)

∫ ℓ/2

0

(u− ℓ/2)2 sinh(szdu) du

Using integration by parts twice, this evaluates to:

∫ 0

−ℓ/2
x2hL(x) dx =

1

s2zd
− ℓ2

8(cosh(szdℓ/2)− 1)
(146)

Therefore, the random adjustment contribution is:

µ2,adj,ζ =
ζ

Fss

[
2

s2zd
− ℓ2

4(cosh(szdℓ/2)− 1)

]
(147)

where ζ/Fss = (cosh(szdℓ/2)− 1)/ cosh(szdℓ/2) = 1− sech(szdℓ/2).

The variance (which equals the second moment in this symmetric case) simplifies elegantly. Using s2zd =

ζ/ν and writing C ≡ cosh(szdℓ/2) for brevity:

µ2,adj =
ℓ2

4C
+
C − 1

C

[
2

s2zd
− ℓ2

4(C − 1)

]
=

ℓ2

4C
+

2(C − 1)

s2zdC
− ℓ2

4C
=

2(cosh(szdℓ/2)− 1)

s2zd cosh(szdℓ/2)
(148)

or equivalently:

Var(x∗ − x|adjust) = 2ν

ζ
(1− sech(szdℓ/2)) (149)

This decomposition is useful for calibrating the model to microdata on the distribution of price changes,

distinguishing between adjustments driven by boundary crossings versus random opportunities.

G.4 Kurtosis of Price Adjustments

The kurtosis of price adjustments characterizes the tail behavior of the distribution of price changes. The

kurtosis is given by

Kurt(x− x∗|adjust) = E[(x∗ − x− µ1,adj)
4|adjust]

Var(x∗ − x|adjust)
(150)

The denominator is given by equation (140) while the numerator is

E[(x∗ − x− µ1,adj)
4|adjust] =

1

Fss

(
Fx(x

∗ − x− µ1,adj)
4 + Fx̄(x

∗ − x̄− µ1,adj)
4 + ζ

∫ x̄

x

(x∗ − x− µ1,adj)
4hss(x)dx

)
(151)
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G.4.1 Zero-Drift Special Case

When π̄ = 0, symmetry gives x∗ = 0, x̄ = −x = ℓ/2, and Fx = Fx̄. Since µ1,adj = 0 by symmetry, the

centered moments equal the raw moments. The kurtosis simplifies to:

Kurt(x∗ − x|adjust) = µ4,adj

µ2
2,adj

(152)

The fourth moment contributions from boundaries are equal. Using (137):

µ4,adj,x = µ4,adj,x̄ =
Fx
Fss

(ℓ/2)4 =
(ℓ/2)4

2 cosh(szdℓ/2)
=

ℓ4

32 cosh(szdℓ/2)
(153)

For the random adjustment term, using the symmetric density:

µ4,adj,ζ =
ζ

Fss

∫ ℓ/2

−ℓ/2
x4hss(x) dx =

2ζ

Fss

∫ 0

−ℓ/2
x4hL(x) dx

Using the same integration by parts technique as for the second moment:

∫ 0

−ℓ/2
x4hL(x) dx =

12

s4zd
− ℓ4

32(cosh(szdℓ/2)− 1)
− 3ℓ2

2s2zd(cosh(szdℓ/2)− 1)
(154)

Therefore, the random adjustment contribution is:

µ4,adj,ζ =
ζ

Fss

[
24

s4zd
− ℓ4

16(cosh(szdℓ/2)− 1)
− 3ℓ2

s2zd(cosh(szdℓ/2)− 1)

]
(155)

where ζ/Fss = (cosh(szdℓ/2)− 1)/ cosh(szdℓ/2).

The total fourth moment simplifies similarly to the variance. Writing C ≡ cosh(szdℓ/2) as before:

µ4,adj =
ℓ4

16C
+
C − 1

C

[
24

s4zd
− ℓ4

16(C − 1)
− 3ℓ2

s2zd(C − 1)

]
(156)

which simplifies to:

µ4,adj =
24(cosh(szdℓ/2)− 1)

s4zd cosh(szdℓ/2)
− 3ℓ2

s2zd cosh(szdℓ/2)
=

24ν2

ζ2
(1− sech(szdℓ/2))−

3ℓ2ν

ζ cosh(szdℓ/2)
(157)

The kurtosis depends on the relative importance of boundary versus random adjustments. When ζ is

small (mostly boundary adjustments), the distribution has mass concentrated at ±ℓ/2, yielding high kurtosis.

When ζ is large (mostly random adjustments from the interior), kurtosis is lower.
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H Computational Appendix

This appendix describes the numerical implementation of the model solution. For the purposes of speed and

clarity, it derives a number of integrals analytically. Then it lays out the computational algorithm.

H.1 Analytical integrals against the stationary distribution

This subsection records the closed-form integral formulas used to calculate moments from the piecewise-

exponential stationary density. These solutions take the value function’s piecewise coefficients (AL, BL, AR, BR)

and shared roots (r1, r2) as known.

The common building blocks for integrals appearing in Lemma 1 and subsequent propositions are

1. mass on a subinterval: Ω0[a, b] =
∫ b
a
hss(x) dx

2. first moment: Ω1[a, b] =
∫ b
a
xhss(x) dx

3. second moment (quadratic kernel): Ω2[a, b] =
∫ b
a
x2hss(x) dx

All of these are linear combinations of the basic exponential moments on an interval [a, b]. For r ∈ R

define

I0(r; a, b) ≡
∫ b

a

erx dx =


erb − era

r
r ̸= 0

b− a r = 0

I1(r; a, b) ≡
∫ b

a

xerx dx =
berb − aera

r
− erb − era

r2

I2(r; a, b) ≡
∫ b

a

x2erx dx =
b2erb − a2era

r
− 2

berb − aera

r2
+ 2

erb − era

r3

For the full inaction region we simply sum the contributions from the left and right pieces. For example

Ω1[x, x̄] = ALI1(r1;x, x
∗) +BLI1(r2;x, x

∗) +ARI1(r1;x
∗, x̄) +BRI1(r2;x

∗, x̄)

For a polynomial times an exponential,
∫ b
a
p(x)erx dx with p(x) = αx2 + βx+ γ, the result is

∫ b

a

p(x)erxdx = αI2(r; a, b) + βI1(r; a, b) + γI0(r; a, b)

H.1.1 Analytical derivation of ΘMC,n(x) and Θv,n(x)

Recall from Lemma 1 that

ΘMC,n(x) = −2B

∫ x̄

x

γHJB,n(x, y) y dy Θv,n(x) = −ζ
∫ x̄

x

γHJB,n(x, y) dy+ν∂yγHJB,n(x, x)−ν∂yγHJB,n(x, x̄)
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From (29) and the relation γHJB,n(x, y) = γKFE,n(y, x) we have

γHJB,n(x, y) =
2

x̄− x
e

π̄
2ν (x−y) sin

(
nπ(y − x)

x̄− x

)
sin

(
nπ(x− x)

x̄− x

)

Separating the x- and y-dependence, define the constant (in y)

Gn(x) ≡
2

x̄− x
e

π̄
2ν x sin

(
nπ(x− x)

x̄− x

)

so that

γHJB,n(x, y) = Gn(x) e−
π̄
2ν y sin

(
nπ(y − x)

x̄− x

)
We compute

ΘMC,n(x) = −2BGn(x)
∫ x̄

x

e−
π̄
2ν y sin

(
nπ(y − x)

x̄− x

)
y dy

This integral has the form ∫ x̄

x

y e−
π̄
2ν y sin

(
nπ(y − x)

x̄− x

)
dy

Using the identity sin(θ) = eiθ−e−iθ

2i with θ = nπ(y−x)
x̄−x , we obtain

sin

(
nπ(y − x)

x̄− x

)
=

1

2i

(
ei

nπ
x̄−x (y−x) − e−i

nπ
x̄−x (y−x)

)
=
e−i

nπx
x̄−x

2i
ei

nπ
x̄−xy − ei

nπx
x̄−x

2i
e−i

nπ
x̄−xy

Thus the integral becomes a linear combination of

∫ x̄

x

y e(−
π̄
2ν ±iωn)ydy, ωn ≡ nπ

x̄− x

which reduces to ∫ x̄

x

y esydy = I1(s;x, x̄)

where I0 and I1 are the elementary integrals defined above.

Specifically, with s± = − π̄
2ν ± iωn and the phase factors

ϕ± = e∓iωnx,

we have

ΘMC,n(x) = −2BGn(x) · Re
[
1

2i
(ϕ−I1(s+;x, x̄)− ϕ+I1(s−;x, x̄))

]
Define the single integral (over the full domain [x, x̄])

JMC
n =

1

2i

[
e−iωnxI1(s+;x, x̄)− eiωnxI1(s−;x, x̄)

]
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where s± = − π̄
2ν ± iωn. Then

ΘMC,n(x) = −2BGn(x)Re
[
JMC
n

]
Similarly for Θv,n(x), the integral term (without the stationary distribution h(y)) is

∫ x̄

x

γHJB,n(x, y) dy = Gn(x)Jvn

where

Jvn =
1

2i

[
e−iωnxI0(s+;x, x̄)− eiωnxI0(s−;x, x̄)

]
The boundary terms ∂yγHJB,n(x, x) and ∂yγHJB,n(x, x̄) are evaluated directly from the formula for γHJB,n.

H.1.2 Analytic computation of χ and Ξ coefficients

From Proposition 2, the boundary shift coefficients are

χx∗,n = − 1

∂2xvss(x
∗)
Θ′
MC,n(x

∗), Ξx∗,n = − 1

∂2xvss(x
∗)
Θ′
v,n(x

∗),

and similarly for χx,n, χx̄,n,Ξx,n,Ξx̄,n.

To compute Θ′
MC,n(x), differentiate the expression derived above with respect to x:

Θ′
MC,n(x) = −2BG′

n(x)Re
[
JMC
n

]
,

where

G′
n(x) =

2

x̄− x
e

π̄
2ν x

[
π̄

2ν
sin

(
nπ(x− x)

x̄− x

)
+

nπ

x̄− x
cos

(
nπ(x− x)

x̄− x

)]
.

Similarly for Θ′
v,n(x).

H.1.3 Analytical derivation of ξ coefficients

This section derives analytical expressions for the ξ coefficients defined in Theorem 1. Throughout, let

ℓ = x̄− x, ωn = nπ/ℓ, and α = π̄/(2ν).

Lemma 17. The coefficients ξF,n, ξx∗,n, ξx,n, and ξx̄,n are given by

ξF,n =
2

ℓ
Ineαx

∗
sin(ωn(x

∗ − x)) (158)

ξx∗,n = Fss
2

ℓ
Ineαx

∗
[α sin(ωn(x

∗ − x)) + ωn cos(ωn(x
∗ − x))] (159)

ξx,n = −νh′ss(x)
2

ℓ
Ineαxωn (160)

ξx̄,n = −νh′ss(x̄)
2

ℓ
Ineαx̄ωn(−1)n (161)
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where In ≡
∫ x̄
x
xe−αx sin(ωn(x− x))dx has the closed-form expression

In =
e−αx

α2 + ω2
n

[(
x+

2α

α2 + ω2
n

)
ωn
(
1− (−1)ne−αℓ

)
− ωnℓ(−1)ne−αℓ

]
(162)

Proof. From Proposition 2, the coefficients are defined as integrals of the KFE Green’s function components.

Recall the definition of the Green’s function component from Lemma 2:

γKFE,n(x, y) =
2

ℓ
eα(y−x) sin(ωn(x− x)) sin(ωn(y − x))

using the definitions of ℓ, ωn, and α.

The coefficient ξF,n is defined as ξF,n =
∫ x̄
x
xγKFE,n(x, x

∗)dx Substituting γKFE,n(x, x
∗):

ξF,n =
2

ℓ
eαx

∗
sin(ωn(x

∗ − x))

∫ x̄

x

xe−αx sin(ωn(x− x))dx

The integral is exactly Jn, yielding the result.

The coefficient ξx∗,n is defined as ξx∗,n = Fss
∫ x̄
x
x∂yγKFE,n(x, x

∗)dx. Differentiating γKFE,n(x, y) with

respect to y:

∂yγKFE,n(x, y) =
2

ℓ
e−αx sin(ωn(x− x)) [αeαy sin(ωn(y − x)) + eαyωn cos(ωn(y − x))]

Evaluating at y = x∗:

∂yγKFE,n(x, x
∗) =

2

ℓ
e−αx sin(ωn(x− x))eαx

∗
[α sin(ωn(x

∗ − x)) + ωn cos(ωn(x
∗ − x))]

Substituting into the integral:

ξx∗,n = Fss
2

ℓ
eαx

∗
[α sin(ωn(x

∗ − x)) + ωn cos(ωn(x
∗ − x))]

∫ x̄

x

xe−αx sin(ωn(x− x))dx

which yields the result.

The coefficients ξx,n and ξx̄,n involve the derivative at the boundaries. At y = x, sin(ωn(y− x)) = 0 and

cos(ωn(y − x)) = 1, so

∂yγKFE,n(x, x) =
2

ℓ
e−αx sin(ωn(x− x))eαxωn

Substituting into ξx,n = −νh′ss(x)
∫ x̄
x
x∂yγKFE,n(x, x)dx gives the result.

At y = x̄, sin(ωn(y − x)) = 0 and cos(ωn(y − x)) = (−1)n, so

∂yγKFE,n(x, x̄) =
2

ℓ
e−αx sin(ωn(x− x))eαx̄ωn(−1)n

Substituting into ξx̄,n = −νh′ss(x̄)
∫ x̄
x
x∂yγKFE,n(x, x̄)dx gives the result.
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To evaluate In, substitute u = x− x so that x = u+ x and the integral becomes

In = e−αx
∫ ℓ

0

(u+ x)e−αu sin(ωnu)du

This separates into two standard integrals. Using the formulas

∫ ℓ

0

e−αu sin(ωnu)du =
ωn

α2 + ω2
n

(
1− (−1)ne−αℓ

)
(since sin(ωnℓ) = sin(nπ) = 0 and cos(ωnℓ) = (−1)n), and

∫ ℓ

0

ue−αu sin(ωnu)du =

[
e−αu

α2 + ω2
n

(
(−α sin(ωnu)− ωn cos(ωnu))u+

2αωn
(α2 + ω2

n)
sin(ωnu)

− α2 − ω2
n

(α2 + ω2
n)

cos(ωnu)

)]ℓ
0

=
1

α2 + ω2
n

[
−ωnℓ(−1)ne−αℓ − α2 − ω2

n

α2 + ω2
n

(−1)ne−αℓ +
α2 − ω2

n

α2 + ω2
n

]
=

1

α2 + ω2
n

[
−ωnℓ(−1)ne−αℓ +

α2 − ω2
n

α2 + ω2
n

(
1− (−1)ne−αℓ

)]

Combining and simplifying yields (162).

Lemma 18. The primed ξ coefficients are

ξx′,n = h′ss(x)
ν

λKFE,n

2ωn
ℓ
eαxIn (163)

ξx̄′,n = h′ss(x̄)
ν

λKFE,n

2ωn
ℓ

(−1)neαx̄In (164)

ξx∗′,n = Fss
2

ℓ
In (KL,n +KR,n) (165)

where In is defined in Lemma 17, and

KL,n = BLr1r2
[
e−r1xJ (r1 + α, x, x∗)− e−r2xJ (r2 + α, x, x∗)

]
(166)

KR,n = BRr1r2
[
e−r1x̄J (r1 + α, x∗, x̄)− e−r2x̄J (r2 + α, x∗, x̄)

]
(167)

with BL = −ψR(x∗)/[νWN (x∗)], BR = −ψL(x∗)/[νWN (x∗)] as defined in Lemma 6, and

J (β, a, b) ≡
∫ b

a

eβy sin(ωn(y − x)) dy

=
eβb(β sin(ωn(b− x))− ωn cos(ωn(b− x)))− eβa(β sin(ωn(a− x))− ωn cos(ωn(a− x)))

β2 + ω2
n

(168)
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Proof. From Theorem 1 and Lemma 2, the ϖH functions are

ϖH,x,n(x) =
ν

λKFE,n
∂yγKFE,n(x, x), ϖH,x̄,n(x) =

ν

λKFE,n
∂yγKFE,n(x, x̄)

Computing ∂yγKFE,n(x, y):

∂yγKFE,n(x, y) =
2

ℓ
eα(y−x) sin(ωn(x− x)) [α sin(ωn(y − x)) + ωn cos(ωn(y − x))]

At y = x: sin(0) = 0 and cos(0) = 1, so

∂yγKFE,n(x, x) =
2ωn
ℓ
eα(x−x) sin(ωn(x− x))

Thus

ϖH,x,n(x) =
ν

λKFE,n

2ωn
ℓ
eαxe−αx sin(ωn(x− x))

and from ξx′,n = h′ss(x)
∫ x̄
x
xϖH,x,n(x)dx:

ξx′,n = h′ss(x)
ν

λKFE,n

2ωn
ℓ
eαx

∫ x̄

x

xe−αx sin(ωn(x− x))dx = h′ss(x)
ν

λKFE,n

2ωn
ℓ
eαxIn

At y = x̄: sin(nπ) = 0 and cos(nπ) = (−1)n, so

∂yγKFE,n(x, x̄) =
2ωn
ℓ

(−1)neα(x̄−x) sin(ωn(x− x))

and ξx̄′,n follows by the same calculation.

For ξx∗′,n, from Theorem 1:

ξx∗′,n = Fss

∫ x̄

x

xϖJ,n(x) dx, ϖJ,n(x) =

∫ x̄

x

γKFE,n(x, y)Jx∗(y) dy

By Fubini’s theorem, swapping the order of integration:

ξx∗′,n = Fss

∫ x̄

x

Jx∗(y)

[∫ x̄

x

x γKFE,n(x, y) dx

]
dy

The inner integral evaluates to

∫ x̄

x

x γKFE,n(x, y) dx =
2

ℓ
sin(ωn(y − x))eαy

∫ x̄

x

x e−αx sin(ωn(x− x)) dx =
2

ℓ
sin(ωn(y − x))eαyIn

Therefore

ξx∗′,n = Fss
2

ℓ
In
∫ x̄

x

Jx∗(y) sin(ωn(y − x))eαy dy
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Since Jx∗(y) is piecewise with Jx∗(y) = BLψ
′
L(y) for y < x∗ and Jx∗(y) = BRψ

′
R(y) for y > x∗ (from

Lemma 6), and ψ′
L(y) = r1r2(e

r1(y−x) − er2(y−x)), ψ′
R(y) = r1r2(e

r1(y−x̄) − er2(y−x̄)), the integral splits into

KL,n +KR,n. Each term involves integrals of the form
∫
eβy sin(ωn(y − x))dy, which evaluate to (168).

Lemma 19 (Sum of ξF,n/λKFE,n). The eigenvalue-weighted sum of the ξF,n coefficients equals the steady-

state aggregate price gap divided by the steady-state frequency:

∞∑
n=1

ξF,n
λKFE,n

=
X̄

Fss

where X̄ =
∫ x̄
x
xhss(x) dx is the steady-state aggregate price gap.

Proof. The steady-state distribution hss(x) satisfies the KFE

(ζ −K∗)hss = Fss δ(x− x∗)

where K∗ = ν∂2x + π̄∂x is the KFE differential operator. The Green’s function (resolvent) satisfies (ζ −

K∗
x)G(x, y) = δ(x− y) with Dirichlet boundary conditions. Comparing these equations:

hss(x) = Fss ·GKFE(x, x∗)

The eigenfunction expansion of the time-dependent Green’s function (from Lemma 2) is GKFE(x, y, t) =∑∞
n=1 γKFE,n(x, y)e

−λKFE,nt. The resolvent (steady-state Green’s function) is obtained by integrating over

time:

GKFE(x, y) =

∫ ∞

0

GKFE(x, y, t) dt =

∞∑
n=1

γKFE,n(x, y)

λKFE,n

Therefore hss(x)/Fss =
∑∞
n=1 γKFE,n(x, x

∗)/λKFE,n. Integrating against x:

1

Fss

∫ x̄

x

xhss(x) dx =

∞∑
n=1

1

λKFE,n

∫ x̄

x

x γKFE,n(x, x
∗) dx =

∞∑
n=1

ξF,n
λKFE,n
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H.1.4 Analytical derivation of φ coefficients

Lemma 20 (Unprimed φ coefficients). The coefficients φF,n, φx∗,n, φx,n, and φx̄,n are given by

φF,n = ν
2

ℓ
ωn sin(ωn(x

∗ − x))
[
e−αx − e−αx̄(−1)n

]
eαx

∗
(169)

φx∗,n = Fssν
2

ℓ
ωn [α sin(ωn(x

∗ − x)) + ωn cos(ωn(x
∗ − x))] eαx

∗

×
[
e−αx − e−αx̄(−1)n

]
(170)

φx,n = −ν2h′ss(x)
2

ℓ
ω2
n

[
1− eα(x−x̄)(−1)n

]
(171)

φx̄,n = −ν2h′ss(x̄)
2

ℓ
ω2
n

[
eα(x−x̄)(−1)n − 1

]
(172)

where ℓ = x̄− x, ωn = nπ
ℓ , and α = π̄

2ν .

Proof. From Theorem 1 and Lemma 2, the coefficients φ·,n are defined by

φ·,n ≡ ν
(
ϖ′

·,n(x)−ϖ′
·,n(x̄)

)
(173)

where the ϖ·,n(x) functions are defined in terms of the KFE Green’s function component:

γKFE,n(x, y) =
2

ℓ
eα(y−x) sin(ωn(x− x)) sin(ωn(y − x))

Lemma 2 gives ϖF,n(x) = γKFE,n(x, x
∗). Therefore

ϖF,n(x) =
2

ℓ
eα(x

∗−x) sin(ωn(x− x)) sin(ωn(x
∗ − x))

Take the derivative with respect to x:

ϖ′
F,n(x) =

2

ℓ
eα(x

∗−x) sin(ωn(x
∗ − x)) [−α sin(ωn(x− x)) + ωn cos(ωn(x− x))]

Evaluating at x = x (where sin(0) = 0 and cos(0) = 1):

ϖ′
F,n(x) =

2

ℓ
eα(x

∗−x) sin(ωn(x
∗ − x))ωn

Evaluating at x = x̄ (where sin(nπ) = 0 and cos(nπ) = (−1)n):

ϖ′
F,n(x̄) =

2

ℓ
eα(x

∗−x̄) sin(ωn(x
∗ − x))ωn(−1)n
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Substitute into equation (173):

φF,n = ν
2

ℓ
eαx

∗
e−αx sin(ωn(x

∗ − x))ωn − ν
2

ℓ
eαx

∗
e−αx̄ sin(ωn(x

∗ − x))ωn(−1)n

= ν
2

ℓ
ωn sin(ωn(x

∗ − x))eαx
∗ [
e−αx − e−αx̄(−1)n

]
Lemma 2 gives ϖx∗,n(x) = Fss∂yγKFE,n(x, x

∗). Computing ∂yγKFE,n(x, y):

∂yγKFE,n(x, y) =
2

ℓ
e−αx sin(ωn(x− x))eαy [α sin(ωn(y − x)) + ωn cos(ωn(y − x))]

At y = x∗:

ϖx∗,n(x) = Fss
2

ℓ
e−αx sin(ωn(x− x))eαx

∗
[α sin(ωn(x

∗ − x)) + ωn cos(ωn(x
∗ − x))]

Taking the derivative with respect to x and evaluating at the boundaries (using the same trigonometric

identities as before):

ϖ′
x∗,n(x) = Fss

2

ℓ
e−αxeαx

∗
[α sin(ωn(x

∗ − x)) + ωn cos(ωn(x
∗ − x))]ωn

ϖ′
x∗,n(x̄) = Fss

2

ℓ
e−αx̄eαx

∗
[α sin(ωn(x

∗ − x)) + ωn cos(ωn(x
∗ − x))]ωn(−1)n

Substitute into equation (173):

φx∗,n = Fssν
2

ℓ
ωn [α sin(ωn(x

∗ − x)) + ωn cos(ωn(x
∗ − x))] eαx

∗ [
e−αx − e−αx̄(−1)n

]
Lemma 2 gives ϖx,n(x) = −νh′ss(x)∂yγKFE,n(x, x). At y = x:

∂yγKFE,n(x, x) =
2

ℓ
e−αx sin(ωn(x− x))eαxωn

Therefore:

ϖx,n(x) = −νh′ss(x)
2

ℓ
eαxe−αx sin(ωn(x− x))ωn

Taking the derivative

ϖ′
x,n(x) = −νh′ss(x)

2

ℓ
eαxωne

−αx [−α sin(ωn(x− x)) + ωn cos(ωn(x− x))]

Evaluating at the boundaries:

ϖ′
x,n(x) = −νh′ss(x)

2

ℓ
eαxωne

−αxωn = −νh′ss(x)
2

ℓ
ω2
n
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ϖ′
x,n(x̄) = −νh′ss(x)

2

ℓ
eαxωne

−αx̄ωn(−1)n

Substitute into equation (173)

φx,n = −ν2h′ss(x)
2

ℓ
ω2
n + ν2h′ss(x)

2

ℓ
eα(x−x̄)ω2

n(−1)n

= −ν2h′ss(x)
2

ℓ
ω2
n

[
1− eα(x−x̄)(−1)n

]
Lemma 2 gives ϖx̄,n(x) = −νh′ss(x̄)∂yγKFE,n(x, x̄). At y = x̄:

∂yγKFE,n(x, x̄) =
2

ℓ
e−αx sin(ωn(x− x))eαx̄ωn(−1)n

Following the same steps,

ϖ′
x̄,n(x) = −νh′ss(x̄)

2

ℓ
eα(x̄−x)ω2

n(−1)n, ϖ′
x̄,n(x̄) = −νh′ss(x̄)

2

ℓ
ω2
n

Substitute into equation (173)

φx̄,n = −ν2h′ss(x̄)
2

ℓ
ω2
n

[
eα(x−x̄)(−1)n − 1

]

Lemma 21 (Primed φ coefficients). The primed φ coefficients are

φx′,n = h′ss(x)
ν2

λKFE,n

2

ℓ
ω2
n

[
1− (−1)ne−αℓ

]
(174)

φx̄′,n = h′ss(x̄)
ν2

λKFE,n

2

ℓ
ω2
n

[
(−1)neαℓ − 1

]
(175)

φx∗′,n = Fssν
(
ϖ′
J,n(x)−ϖ′

J,n(x̄)
)

(176)

where ϖJ,n(x) =
∫ x̄
x
γKFE,n(x, y)Jx∗(y)dy. Since Jx∗(y) is piecewise (defined in (26)), this evaluates to

φx∗′,n = Fssν
2ωn
ℓ

[KL,n +KR,n] (177)

where

KL,n = − ψR(x
∗)

νWN (x∗)

∫ x∗

x

ψ′
L(y)

[
eα(y−x) − (−1)neα(y−x̄)

]
sin(ωn(y − x))dy (178)

KR,n = − ψL(x
∗)

νWN (x∗)

∫ x̄

x∗
ψ′
R(y)

[
eα(y−x) − (−1)neα(y−x̄)

]
sin(ωn(y − x))dy (179)

and the functions ψL, ψR,WN are defined in Lemma 6.
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Proof. For φx′,n = h′ss(x)ν(ϖ
′
H,x,n(x) −ϖ′

H,x,n(x̄)), recall ϖH,x,n(x) =
ν

λKFE,n
∂yγKFE,n(x, x). Taking the

derivative with respect to x:

ϖ′
H,x,n(x) =

ν

λKFE,n

2

ℓ
ωne

αxe−αx [−α sin(ωn(x− x)) + ωn cos(ωn(x− x))]

At x = x: ϖ′
H,x,n(x) =

ν
λKFE,n

2
ℓω

2
n.

At x = x̄: ϖ′
H,x,n(x̄) =

ν
λKFE,n

2
ℓωne

α(x−x̄)ωn(−1)n.

Thus

φx′,n = h′ss(x)
ν2

λKFE,n

2

ℓ
ω2
n

[
1− (−1)ne−αℓ

]
The derivation for φx̄′,n follows similarly using ϖH,x̄,n(x) =

ν
λKFE,n

∂yγKFE,n(x, x̄).

From the definition ϖJ,n(x) =
∫ x̄
x
γKFE,n(x, y)Jx∗(y)dy, differentiating under the integral sign:

ϖ′
J,n(x) =

∫ x̄

x

∂xγKFE,n(x, y)Jx∗(y)dy

Computing ∂xγKFE,n(x, y) from (29):

∂xγKFE,n(x, y) =
2

ℓ
eα(y−x) sin(ωn(y − x)) [−α sin(ωn(x− x)) + ωn cos(ωn(x− x))]

At the boundaries, sin(ωn(x− x)) = 0, cos(ωn(x− x)) = 1, and cos(ωn(x̄− x)) = (−1)n, so

∂xγKFE,n(x, y) =
2ωn
ℓ
eα(y−x) sin(ωn(y − x))

∂xγKFE,n(x̄, y) =
2ωn
ℓ

(−1)neα(y−x̄) sin(ωn(y − x))

Therefore

ϖ′
J,n(x)−ϖ′

J,n(x̄) =
2ωn
ℓ

∫ x̄

x

Jx∗(y)
[
eα(y−x) − (−1)neα(y−x̄)

]
sin(ωn(y − x))dy

The lifting function Jx∗(y) is piecewise, with Jx∗(y) = − ψR(x∗)
νWN (x∗)ψ

′
L(y) for y < x∗ and Jx∗(y) = − ψL(x∗)

νWN (x∗)ψ
′
R(y)

for y > x∗. Splitting the integral at x∗ yields two terms of the form

Kn,j =
∫
e(α+rj)y sin(ωn(y − x)) dy

where rj is an exponent from the homogeneous solution ψ′
L or ψ′

R. Applying the standard identity

∫
eay sin(by + c) dy =

eay

a2 + b2
(
a sin(by + c)− b cos(by + c)

)
with a = α + rj , b = ωn, and c = −ωnx, each Kn,j evaluates to a closed-form expression in the model
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parameters.

Lemma 22 (Sum of φF,n/λKFE,n). The eigenvalue-weighted sum of the φF,n coefficients is

∞∑
n=1

φF,n
λKFE,n

= 1− ζ

Fss

where Fss is the steady-state frequency of price adjustment.

Proof. From the definition φF,n = ν(ϖ′
F,n(x)−ϖ′

F,n(x̄)) where ϖF,n(x) = γKFE,n(x, x
∗):

∞∑
n=1

φF,n
λKFE,n

= ν

( ∞∑
n=1

∂xγKFE,n(x, x
∗)

λKFE,n
−

∞∑
n=1

∂xγKFE,n(x̄, x
∗)

λKFE,n

)

Using the resolvent representation from Lemma 19,
∑∞
n=1 γKFE,n(x, x

∗)/λKFE,n = hss(x)/Fss. Differenti-

ating with respect to x:
∞∑
n=1

∂xγKFE,n(x, x
∗)

λKFE,n
=
h′ss(x)

Fss

Therefore
∞∑
n=1

φF,n
λKFE,n

=
ν

Fss
(h′ss(x)− h′ss(x̄))

From the steady-state frequency formula (78) with absorbing boundary conditions hss(x) = hss(x̄) = 0:

Fss = νh′ss(x)− νh′ss(x̄) + ζ

Rearranging: ν(h′ss(x)− h′ss(x̄)) = Fss − ζ. Substituting:

∞∑
n=1

φF,n
λKFE,n

=
Fss − ζ

Fss
= 1− ζ

Fss

H.2 Dynamic Solution Algorithm

The discrete time partial equilibrium (Definition 1) is a series of forwards- and backwards-looking linear

equations. The series is infinite, so in practice it must be truncated at a finite number of eigenvalues n̄.

For low levels of trend inflation, a small n̄ choice (e.g. 20) is sufficient to achieve high accuracy, but the

algorithm is fast and higher trend inflation levels require higher truncation indices, so I use n̄ = 1000 in the

numerical examples.

For an arbitrary truncation n̄ on the solution order, any standard solution method for linear macroe-

conomic models (Uhlig, 2001; Sims, 2002) can be used to solve for the equilibrium processes. Instead, this

appendix presents a more concrete algorithm that solves for each aggregate term sequentially. This can be
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helpful for diagnosing problems and understanding the code.

The objective of the algorithm is to find the equilibrium sequence of price gaps X̂t, boundaries x̂
∗
t , x̂t, ˆ̄xt,

values V̂ ∗
t , V̂ t, V̂ t, and flows F̂t. It proceeds by:

1. Find V̂ ∗
t by Proposition 2. In lag operator notation equation (40) becomes

V̂ ∗
n,t = ςHJB,n

(
ΘMC,n(x

∗) (−MCt) + Θv,n(x
∗)V̂ ∗

t

)
+ θnβL

−1V̂ ∗
n,t

where θnβ = e−λKFE,ne−ρ = e−λHJB,n . Aggregate over n and rearrange to obtain

V̂ ∗
t =

n̄∑
n=1

ςHJB,nΘMC,n(x
∗)

1− θnβL−1
(−MCt) +

(
n̄∑
n=1

ςHJB,nΘv,n(x
∗)

1− θnβL−1

)
V̂ ∗
t

Write as a lag-operator polynomial and invert:

V̂ ∗
t =

1

1−
∑n̄
n=1

ςHJB,n Θv,n(x∗)
1−θnβL−1

[
n̄∑
n=1

ςHJB,nΘMC,n(x
∗)

1− θnβL−1
(−MCt)

]

2. Given V̂ ∗
t , find V̂ t and V̂ t by Proposition 2. In lag operator notation they become

V̂ n,t = ςHJB,n

(
−ΘMC,n(x)MCt +Θv,n(x)V̂

∗
t

)
+ θnβL

−1V̂ n,t

V̂ n,t = ςHJB,n

(
−ΘMC,n(x̄)MCt +Θv,n(x̄)V̂

∗
t

)
+ θnβL

−1V̂ n,t

thus the aggregate values are

V̂ t =

n̄∑
n=1

V̂ n,t =

(
n̄∑
n=1

−ςHJB,nΘMC,n(x)

1− θnβL−1

)
MCt +

(
n̄∑
n=1

ςHJB,nΘv,n(x)

1− θnβL−1

)
V̂ ∗
t

V̂ t =

n̄∑
n=1

V̂ n,t =

(
n̄∑
n=1

−ςHJB,nΘMC,n(x̄)

1− θnβL−1

)
MCt +

(
n̄∑
n=1

ςHJB,nΘv,n(x̄)

1− θnβL−1

)
V̂ ∗
t

3. Given V̂ ∗
t , find (x̂∗t , x̂t, ˆ̄xt) by Proposition 2. In lag operator notation equations (43), (44), and (45)

become

x̂∗n,t = ςHJB,n

(
χx∗,n (−MCt) + Ξx∗,nV̂

∗
t

)
+ θnβL

−1x̂∗n,t

x̂n,t = ςHJB,n

(
χx,n (−MCt) + Ξx,nV̂

∗
t

)
+ θnβL

−1x̂n,t

ˆ̄xn,t = ςHJB,n

(
χx̄,n (−MCt) + Ξx̄,nV̂

∗
t

)
+ θnβL

−1 ˆ̄xn,t
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thus the aggregate boundaries are

x̂∗t =

n̄∑
n=1

x̂∗n,t =

(
n̄∑
n=1

ςHJB,n χx∗,n

1− θnβL−1

)
(−MCt) +

(
n̄∑
n=1

ςHJB,n Ξx∗,n

1− θnβL−1

)
V̂ ∗
t

x̂t =

n̄∑
n=1

x̂n,t =

(
n̄∑
n=1

ςHJB,n χx,n
1− θnβL−1

)
(−MCt) +

(
n̄∑
n=1

ςHJB,n Ξx,n
1− θnβL−1

)
V̂ ∗
t

ˆ̄xt =

n̄∑
n=1

ˆ̄xn,t =

(
n̄∑
n=1

ςHJB,n χx̄,n
1− θnβL−1

)
(−MCt) +

(
n̄∑
n=1

ςHJB,n Ξx̄,n
1− θnβL−1

)
V̂ ∗
t

4. Given (x̂∗t , x̂t, ˆ̄xt), find F̂t by Proposition 2. In lag operator notation equation (48) becomes

F̂n,t = ςKFE,n

(
φF,nF̂t + φx∗,nx̂

∗
t + φx,nx̂t − φx̄,n ˆ̄xt

)
+ θnLF̂n,t

Aggregate over n and rearrange to obtain

F̂t =

(
n̄∑
n=1

ςKFE,n φF,n
1− θnL

)
F̂t +

n̄∑
n=1

ςKFE,n φx∗,n

1− θnL
x̂∗t +

n̄∑
n=1

ςKFE,n φx,n
1− θnL

x̂t −
n̄∑
n=1

ςKFE,n φx̄,n
1− θnL

ˆ̄xt

Write as a lag-operator polynomial and invert:

F̂t =
1

1−
∑n̄
n=1

ςKFE,n φF,n

1−θnL

[
n̄∑
n=1

ςKFE,n φx∗,n

1− θnL
x̂∗t +

n̄∑
n=1

ςKFE,n φx,n
1− θnL

x̂t −
n̄∑
n=1

ςKFE,n φx̄,n
1− θnL

ˆ̄xt

]

5. Calculate the aggregate price gap X̂t by Proposition 2. In lag operator notation equation (46) becomes

X̂n,t = ςKFE,n

(
ξF,nF̂t + ξx∗,nx̂

∗
t + ξx,nx̂t − ξx̄,n ˆ̄xt

)
+ θnLX̂n,t

thus the aggregate price gap is

X̂t =

n̄∑
n=1

X̂n,t =

n̄∑
n=1

ςKFE,n ξF,n
1− θnL

F̂t +

n̄∑
n=1

ςKFE,n ξx∗,n

1− θnL
x̂∗t +

n̄∑
n=1

ςKFE,n ξx,n
1− θnL

x̂t −
n̄∑
n=1

ςKFE,n ξx̄,n
1− θnL

ˆ̄xt

I Summary of Mathematical Notation

Steady-state objects are denoted with subscript ss (e.g., hss(x), vss(x), Fss, x
∗
ss, xss, x̄ss). For brevity, I

suppress ss in integration limits, domain specifications, eigenfunction arguments, and coefficient subscript

labels.
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Symbol Description
ρ Discount rate
Ψ Menu cost (cost to adjust price)
ζ Rate of free price adjustment opportunities
ν Variance of idiosyncratic shocks
π̄ Trend inflation rate
η Elasticity of substitution
σ Risk aversion parameter
α Disutility of labor parameter
µ Frictionless optimal markup
B Quadratic profit loss parameter

Table 3: Fixed parameter values.

Symbol Description
hss(x) Steady-state density of firms over price gaps
vss(x) Steady-state firm value function
Fss Steady-state frequency of price adjustment
x∗ss Steady-state reset point
xss Steady-state lower inaction boundary
x̄ss Steady-state upper inaction boundary

Table 4: Primary steady-state objects.

Symbol Description
t Continuous time
i Firm index
C(t) Aggregate consumption at time t
L(t) Aggregate labor at time t
M(t) Money balances at time t
P (t) Aggregate price level at time t
W (t) Nominal wage at time t
R(t) Nominal interest rate at time t
D(t) Aggregate dividends at time t
Q(t) Price of nominal bond at time t
Ai(t) Idiosyncratic preference shifter at time t
Yi(t) Output of firm i at time t
Zi(t) Idiosyncratic productivity of firm i at time t
Li(t) Labor input of firm i at time t

Table 5: Primitive aggregate and firm-level variables.
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Symbol Description Formula
x Price gap (firm state variable) xi(t) = logPi(t)− logZi(t)− log W̄ (t)− µ
x(t, κ), x̄(t, κ) Lower/upper bounds of inaction region —
x∗(t, κ) Optimal reset value for price gap —
v(x, t, κ) Value function for firm with gap x —
h(x, t, κ) Density of firms over price gaps —
MC(t, κ) Aggregate marginal cost deviation MC(t, κ) = logW (t)− log W̄ (t)
F (t, κ) Frequency of price adjustment —
ϕ(x) Initial distribution of price gaps —
φ(x) Terminal condition for value function —

Notes: The aggregate shock size κ is included as an argument where relevant.

Table 6: Mean field game variables and definitions.

Symbol Description Formula
x̂∗(t) Derivative of optimal reset value w.r.t. shock x̂∗(t) = ∂κx

∗(t, 0)
x̂(t), ˆ̄x(t) Derivatives of inaction region bounds x̂(t) = ∂κx(t, 0), ˆ̄x(t) = ∂κx̄(t, 0)
v̂(x, t) Derivative of value function v̂(x, t) = ∂κv(x, t, 0)

ĥ(x, t) Derivative of price gap density ĥ(x, t) = ∂κh(x, t, 0)

F̂ (t) Derivative of frequency of price adjustment F̂ (t) = ∂κF (t, 0)

X̂(t) Derivative of average price gap X̂(t) = ∂κX(t, 0)

Notes: Hatted objects denote derivatives with respect to aggregate shock size, evaluated at κ = 0.

Table 7: Perturbed mean field game variables.
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Symbol Description Formula / Definition

λKFE,n n-th KFE eigenvalue λKFE,n = ζ + π̄2

4ν + νn2π2

(x̄−x)2

λHJB,n n-th HJB eigenvalue λHJB,n = ρ+ λKFE,n

γKFE,n(x, y) KFE Green’s component 2
x̄−xe

π̄
2ν (y−x) sin

(
nπ(x−x)
x̄−x

)
sin
(
nπ(y−x)
x̄−x

)
γHJB,n(x, y) HJB Green’s component γKFE,n(y, x)

ϖS,n(x) KFE shock coefficient
∫ x̄
x
γKFE,n(x, y)h

′
ss(y)dy

ϖF,n(x) KFE FPA coefficient γKFE,n(x, x
∗)

ϖJ,n(x) KFE reset-point lifting coeff.

∫ x̄

x

γKFE,n(x, y)Jx∗(y) dy

ϖH,x,n(x) KFE lower-bound lifting coeff.
ν

λKFE,n
∂yγKFE,n(x, x)

ϖH,x̄,n(x) KFE upper-bound lifting coeff.
ν

λKFE,n
∂yγKFE,n(x, x̄)

ξ0,n Price gap shock coefficient
∫ x̄
x

∫ x̄
x
xh′ss(y)γKFE,n(x, y)dydx

ξF,n Price gap FPA coefficient
∫ x̄
x
xγKFE,n(x, x

∗)dx

ξx∗,n Price gap reset coefficient Fss
∫ x̄
x
x∂yγKFE,n(x, x

∗)dx

ξx,n Price gap lower boundary coeff. −νh′ss(x)
∫ x̄
x
x∂yγKFE,n(x, x)dx

ξx̄,n Price gap upper boundary coeff. −νh′ss(x̄)
∫ x̄
x
x∂yγKFE,n(x, x̄)dx

ΘMC,n(x) HJB MC coefficient −2B
∫ x̄
x
γHJB,n(x, y)ydy

Θv,n(x) HJB value coefficient −ζ
∫ x̄
x
γHJB,n(x, y)dy + ν∂yγHJB,n(x, x)− ν∂yγHJB,n(x, x̄)

χx∗,n Reset boundary MC coeff. − 1
∂2
xvss(x

∗)Θ
′
MC,n(x

∗)

Ξx∗,n Reset boundary value coeff. − 1
∂2
xvss(x

∗)Θ
′
v,n(x

∗)

χx,n Lower boundary MC coeff. − 1
∂2
xvss(x)

Θ′
MC,n(x)

Ξx,n Lower boundary value coeff. − 1
∂2
xvss(x)

Θ′
v,n(x)

χx̄,n Upper boundary MC coeff. − 1
∂2
xvss(x̄)

Θ′
MC,n(x̄)

Ξx̄,n Upper boundary value coeff. − 1
∂2
xvss(x̄)

Θ′
v,n(x̄)

φ·,n FPA coefficients νϖ′
·,n(x) + π̄ϖ·,n(x)− νϖ′

·,n(x̄)− π̄ϖ·,n(x̄)

Notes: Steady-state objects use ss notation. For compactness, ss is suppressed in integration limits and eigenfunction
arguments.

Table 8: Intermediate constructed variables and coefficients.
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Symbol Description Notes

pt Aggregate price gap (PED) pt ∝ X̂crit,t + X̂int,̊n,t

p∗t Optimal reset price gap (PED) p∗t ∝ x̂∗n̊,t
p
t

Lower inaction boundary (PED) p
t
∝ x̂n̊,t

p̄t Upper inaction boundary (PED) p̄t ∝ ˆ̄xn̊,t
V ∗
t Value at reset point (PED) V ∗

t = V̂ ∗
n̊,t

V t Value at lower boundary (PED) V t = V̂ n̊,t

V t Value at upper boundary (PED) V t = V̂ n̊,t
Ft Frequency of price adjustment (PED) Ft ∝ F̂crit,t + F̂int,̊n,t

MCt Aggregate marginal cost (discrete time) Exogenous or from GE
ξp∗,n Composite price gap coefficient ξx∗,n + ξx,n − ξx̄,n
φp∗,n Composite FPA coefficient φx∗,n + φx,n − φx̄,n

Notes: Subscript n̊ denotes the primary eigenfunction index. The critical-point components X̂crit,t and F̂crit,t are

algebraic, while interior components X̂int,n,t and F̂int,n,t are dynamic states.

Table 9: Primary Eigenfunction Discretization (PED) variables.
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